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Abstract

Arithmetic takes time. Children need five or six years to master the one hundred mul-
tiplication facts (0�0 to 9�9), and it takes adults approximately one second to recall an
answer to a problem like 7�8. Multicolumn arithmetic (e.g., 45�67) requires a sequence of
actions, and children produce a host of systematic mistakes when solving such problems.
This thesis models the time course and mistakes of adults and children solving arith-
metic problems. Two models are presented, both of which are built from connectionist
components.

First, a model of memory for multiplication facts is described. A system is built to
capture the response time and slips of adults recalling two digit multiplication facts.
The phenomenon is thought of as spreading activation between problem nodes (such as
“7” and “8”) and product nodes (“56”). The model is a multilayer perceptron trained
with backpropagation, and McClelland’s (1988) cascade equations are used to simulate
the spread of activation. The resulting reaction times and errors are comparable to
those reported for adults. An analysis of the system, together with variations in the
experiments, suggest that problem frequency and the “coarseness” of the input encoding
have a strong effect on the phenomena. Preliminary results from damaging the network
are compared to the arithmetic abilities of brain-damaged subjects.

The second model is of children’s errors in multicolumn multiplication. Here the aim
is not to produce a detailed fit to the empirical observations of errors, but to demonstrate
how a connectionist system can model the behaviour, and what advantages this brings.
Previous production system models are based on an impasse-repair process: when an child
encounters a problem an impasse is said to have occurred, which is then repaired with
general-purpose heuristics. The style of the connectionist model moves away from this.
A simple recurrent network is trained with backpropagation through time to activate
procedures which manipulate a multiplication problem. Training progresses through a
curriculum of problems, and the system is tested on unseen problems. Errors can occur
during testing, and these are compared to children’s errors. The system is analysed in
terms of hidden unit activation trajectories, and the errors are characterized as “capture
errors”. That is, during processing the system may be attracted into a region of state space
that produces an incorrect response but corresponds to a similar arithmetic subprocedure.
The result is a graded state machine—a system with some of the properties of finite state
machines, but with the additional flexibility of connectionist networks. The analysis
shows that connectionist representations can be structured in ways that are useful for
modelling procedural skills such as arithmetic. It is suggested that one of the strengths of
the model is its emphasis on development, rather than on “snap-shot” accounts. Notions
such as “impasse” and “repair” are discussed from a connectionist perspective.
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CHAPTER 1

Introduction

Simple arithmetic skills are difficult to master. Although we understand arithmetic well
intellectually, we falter in its execution. As Marr put it: “I have no doubt that when
we do mental arithmetic we are doing something well, but it is not arithmetic” (1982,
p. 348). Children have acquired a host of impressive skills by the time they are taught
formal arithmetic: they have learned a language and can use vision for autonomous
navigation in a hostile environment. In contrast, the “simple” tasks of arithmetic require
at least a further five or six years of schooling. Once the skills are learned there are
many opportunities for error. Adults, for example, make plenty of mistakes recalling
multiplication facts—especially on the “tricky” problems, such as 8�4 or 9�8. Arithmetic,
it seems, is not an easy skill to come by.

So what is the “something” that we do well when we solve arithmetic problems?
The view taken here is that the things we do well are those tasks suited to a certain
kind of computation—namely connectionism. Difficult tasks, such as arithmetic, need
to be turned into pattern matching problems. That is, “we succeed in solving logical
problems not so much through the use of logic, but by making the problems we wish to
solve conform to problems we are good at solving” (Rumelhart, Smolensky, McClelland
& Hinton 1986, p. 44). Exactly how this is done for arithmetic is the topic of this thesis.
Two elementary arithmetic skills are considered: adult memory for multiplication facts
and children’s errors in long (multicolumn) multiplication.

1.1 Part I—Mental arithmetic

The first part of the thesis considers recall of multiplication facts, such as 3�6=18. In-
tuitively it seems that recalling the answer to such a problem is neither difficult nor
drawn-out. However, the model presented here suggests a brief struggle between prod-
ucts in memory before the (often correct) answer “pops up.” As problems get more
difficult (which usually means larger) the struggle takes a little longer—around one sec-
ond in some cases. Certain problems are easier than others, notably the tie problems
(2�2, 3�3, and so on), and the 5s problems (5 times anything). When mistakes are made
they tend to be related to the presented problem. For example, a common mistake is
6�7=48, and 48 is the answer to 6�8. That is, errors are often the correct answer for a
problem which shares an operand with the presented problem.

This phenomenon and previous models are looked at in detail in chapter 2. The
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review draws on normal and brain-damaged studies of the reaction times and errors of
adults recalling multiplication facts.

Chapter 3 describes the connectionist model built to capture the reaction times and
errors of adults. The basic idea is a simple one: memory for multiplication facts consists
of a set of associations between operands and products; recall is the process of spread-
ing activation, resulting in a product’s activation exceeding a threshold. The activation
spreads at different rates for different problems, giving different reaction times. Occa-
sionally, when under some kind of time pressure, a false product exceeds the threshold.
Most of these errors are operand errors, and the reasons for this are explored.

By varying the assumptions of the simulations, certain factors were found to be
important in determining the phenomena. There is some evidence that smaller problems
are experienced more often than larger problems, and this skew in frequency has a strong
effect on the model. Also, the input encoding to the network (representing the operands
of a problem) can effect the distribution of errors and reaction times. In particular, the
degree of “coarseness” or “sharpness” of the encoding is explored.

Other phenomena are also investigated. For example, it seems that zero problems
(zero times anything) are solved by the rule 0�N=0. There is plenty of evidence for
this, including: zero problems are solved very quickly; errors are of the form 0�N=N;
brain-damaged patients can re-learn zero problems from exposure to just 2 examples, but
not non-zero problems. There is certainly something special about zero, and it is not clear
how this fits into the associative framework.

1.2 Part II—Multicolumn multiplication

The second half of the thesis examines children’s errors on multicolumn multiplication
problems. Behaviour on these problems seems to be rule governed. Children pick up
a collection of “bugs”—systematic perturbations to the correct rules of arithmetic— and
apply the rules producing all sorts of errors. For example:

5 2 4
� 7 3 1
3 5 6 4

7 6
� 4
1 42 4

In the first example, the child multiplies using the pattern for addition: 1�4=4, 3�2=6,
7�5=35. The second example shows a child getting the first multiplication, 4�6=24,
correct. Then, when there is no second multiplier, the child uses the carry in the next
multiplication: 2�7=14.

These errors have previously been modelled with production systems. Chapters 4
reviews the literature on buggy behaviour and models of buggy behaviour, and outlines
relevant work from connectionism. Particular attention is paid to VanLehn’s (1990)
“Sierra” model, as this seems to be the best available model of procedural misconceptions
(see also Pirolli 1991). Briefly, the prevailing notion is that children reach “impasses” when
solving problems—situations in which no rules directly apply. These impasses need to
be “repaired” by general purpose heuristics. Sierra has these heuristics and a learning
mechanism. Incomplete arithmetic rules are learned, which means that Sierra reaches
impasses. Different errors are observed depending on what kind of repair is carried out.

Sierra is a successful model, and the mistakes children make they do seem to derive
from following faulty rules. How could a connectionist build a model of this behaviour?
As Boden (1988, p. 167) notes:

2



It is not clear that processes of relaxation using multiple constraints, powerful
though they may be for pattern matching, are well suited to modelling con-
scious planning or cryptarithmetic—or even mere arithmetic, for that matter.

Chapter 5 explains the approach taken in giving a connectionist interpretation of
multicolumn arithmetic.

A set of operations was devised to allow a network to move around, read from and
write on a problem. A “curriculum” of problems was selected, starting with easy addition
tasks and moving up to three column multiplication. Each problem was encoded as a
sequence of operations and a recurrent network was trained to activate the correct op-
eration at the correct moment when solving a problem. Buggy behaviour was exhibited
when the network was tested on unseen problems. Analysis shows that the representa-
tions learned by the model have a procedural structure, allowing bugs to be composed
of correct skills plus chunks of skills which are correct in other situations. It is suggested
that the gradual learning of these representations is an interesting alternative to snap-shot
rule acquisition accounts.

Connectionist models do not reach impasses as such. That is, there is never a moment
when the system “gets stuck” and needs to repair the current state. Hence it is necessary
to address the role of impasses in learning this task. Are impasses important learning
events, or just a by-product of the problem solving mechanism?

It was never going to be possible to build a model which could compete with the
empirical power of VanLehn’s system: Sierra is the product of over ten years research.
Rather, the work described in this half of the thesis is best thought of as a “demonstrator”
of how one might model arithmetic from a connectionist perspective.

1.3 Structure of arithmetic skills

The splitting of arithmetic skills into two models—fact recall and procedural skills—
is supported by studies of brain-damaged subjects (McCloskey & Caramazza 1985;
McCloskey, Aliminosa & Sokol 1991). Figure 1.1 shows the structure of the number-
processing system. This structure was devised by noting that particular components of
the system can be selectively damaged. For example, one subject (RR) was asked to read
Arabic numbers aloud. For 37 000 he said “Fifty-five thousand”, for 2 he said “one” (Mc-
Closkey & Caramazza 1985, pp. 187–188). Yet RR could determine which of two presented
numbers was larger, and had no trouble selecting a pile of tokens that corresponded to
a presented Arabic number. It seems that RR had no difficulty in comprehending and
representing number, but was impaired in production alone.

This, and other experiments, led McCloskey & Caramazza (1985) to propose the
structure shown in figure 1.1. The model of arithmetic memory deals with the “arith-
metic facts” and “abstract representation” parts of the figure. The multicolumn model is
concerned with the “calculation procedures” part of the structure.

1.4 Aims

There are two major aims. First, to build an explicitly specified model of memory for mul-
tiplication facts. Previous models have been poorly specified—either not implemented
at all, or making assumptions such as the probability of an error being proportional to
answer node activation. These details need to be fleshed out in order to understand the

3



Verbal number

comprehension

Arabic number

comprehension

Abstract internal
representation

Calculation

proceduresfacts

Arithmetic

Calculation mechanisms

8x3

"Eight times three" Verbal number

production

Arabic number

production

"Twenty-four"

24

Number Number
comprehension

mechanisms
production

mechanisms

Figure 1.1. The structure of the cognitive number processing system (after
McCloskey, Aliminosa & Sokol 1991, figure 1).

importance of various assumptions, or changes to assumptions. Hence, the first contri-
bution is an explicit model that can be tested and criticised. Variations on the model
aim to understand the causes of the phenomenon. The causes include the frequency of
problems, the creation of false associations and the nature of the facts themselves.

The second aim is to demonstrate an alternative to production system models of
multicolumn arithmetic, and to show that such an approach is useful. This constitutes the
first connectionist model of this phenomena. Errors are characterized as perturbations
to processing trajectories, rather than faulty rules or repairs to impasses. This view
conceptualizes learning as the formation and differentiation of states in something similar
to a finite state machine. In addition, the analysis of the system is a useful analysis of a
sequential network learning a large structured problem.
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CHAPTER 2

Memory for Arithmetic Facts

There are a number of ways to find the answer to “6�7”. Strategies might include
counting a row of six 7s, recalling the answer to 6�6 and adding on another 6, using a
calculator, or pure recall. Children tend to use a number of strategies, but as they become
older they tend to rely on recall alone (Siegler 1988).

This chapter investigates adults’ recall of multiplication facts. Although adults do use
other strategies, recall seems to be most frequently used, and it is also the strategy that
has been the subject of many detailed experiments. First, a review is presented of the
typical reaction times (RTs) and errors of adults recalling multiplication facts. A number
of models have been proposed to account for the phenomena, and these are reviewed in
section 2.2. A new connectionist model of fact recall, based on McClelland’s (1979, 1988)
“cascade” equations, is described in chapter 3.

2.1 Phenomena

When asked to recall answers to single-digit multiplication problems, both children and
adults exhibit well documented patterns of behaviour. These behaviours are recorded
from experiments based around three kinds of task: production, verification, and primed
production. In the production task, subjects are presented with two digits and asked
to recall the product. The primed production task is similar to the production task, but
before the two digits are presented, the subject is shown a number which may or may not
be the correct answer to the problem. For the verification task the subject is presented
with a problem and candidate solution (“6�7=48?”) and has to decide if the equation is
true or false. In all cases, errors and RTs are recorded.

As production is the every-day task that subjects are familiar with, it is the one
that is considered here. Many of the experimental results come from normal subjects
(e.g., Campbell & Graham 1985; Miller, Permutter & Keating 1984; Campbell 1987;
Ashcraft 1982; Siegler 1988; Harley 1991; Krueger 1986). However, there are interest-
ing results from brain-damaged subjects (McCloskey, Aliminosa & Sokol 1991; Sokol,
McCloskey, Cohen & Aliminosa 1991; McCloskey & Caramazza 1985), and these are
considered in section 2.1.2.

6
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Figure 2.1. Plot of mean correct RT per multiplication table collapsed over
operand order for mean RT of: 60 adults (Campbell & Graham 1985, ap-
pendix A); 26 children in grade 5 (ibid., appendix B).

2.1.1 The production task
Typical production experiments (e.g., Campbell & Graham 1985) run as follows: a subject
is seated in front of a computer screen on which two digits will appear. The subject is
asked to respond “as quickly and accurately as possible” when the digits are shown. The
RT is recorded along with any errors the subject makes. Usually only the problems from
2�2 to 9�9 are tested. In some experiments 0�0 to 9�9 is tested, although zero and ones
problems are often assumed to be solved by a separate mechanism. The complications
added by zero and ones problems are discussed later.

Reaction time
In general, RTs increase across the multiplication tables. That is, problems in the nine
times table tend to take longer to answer than problems in the two times table. However,
this “problem-size effect” has exceptions:

� The five times table is much faster than its position would suggest.

� “Tie” problems (2�2, 3�3 etc.) are recalled relatively quickly.

Figure 2.1 shows the RTs of adults and grade 5 children for the eight multiplication
tables, 2–9. Overall, the developmental trend is for a flattening of the RT curve, and a
increase in response speed. Note that for the grade 5 subjects there is a noticeable dip in
RT for the nine times table which is not present for adults. Zero and ones problems are
considered later (section 2.1.3).
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4 6 8 9 10 12 14 15 16 18 20 21 24 25 27 28 30 32 35 36 40 42 45 48 49 54 56 63 64 72 81
2�2 c
2�3 c
3�2 c 1
2�4 1 1 c 1 1 1
4�2 c 2 1
2�5 c 1 2 1
5�2 c 2
2�6 3 c 2
6�2 1 c 1
2�7 1 c 1 2 1
7�2 1 2 c 1 1
2�8 1 1 c 8
8�2 2 1 c 3
2�9 c
9�2 2 c
3�3 5 c
3�4 1 c
4�3 c
3�5 c 1 1
5�3 c
3�6 1 2 1 c 2
6�3 2 c 2 2 1 1
3�7 c 4
7�3 1 c 1
3�8 2 10 1 c 1
8�3 1 5 c 3 1
3�9 2 8 7 1 c 1
9�3 13 4 1 c 2
4�4 1 3 2 c 2 1
4�5 1 1 1 c 1
5�4 1 1 c
4�6 c 1 2
6�4 c 1
4�7 3 3 1 c 1 1 2
7�4 6 c 2 1 1
4�8 15 3 c 5 4
8�4 20 2 c 2 2
4�9 1 2 4 c 1 2
9�4 1 1 3 5 1 c
5�5 c 3
5�6 1 c 3 1 1
6�5 c 1 5 1
5�7 1 1 c 1 4 1 1
7�5 2 c 2
5�8 1 1 2 c 3 1 1
8�5 2 2 c 4
5�9 2 3 6 c 1 5
9�5 2 4 c 1
6�6 1 c 1 1 1 1
6�7 1 6 2 1 c 1 1 2
7�6 1 1 4 5 c 2 1 1
6�8 1 11 c 1
8�6 1 4 1 c 4 5 2
6�9 1 1 3 1 2 c 9 10 2 3
9�6 1 11 3 2 2 c 10 2
7�7 1 1 6 c
7�8 6 7 4 c 2 1 3
8�7 4 4 6 c 1 2
7�9 1 2 1 1 9 3 12 c 2
9�7 2 3 1 4 8 c 1 5
8�8 3 1 1 2 c 7
8�9 1 1 1 4 4 c 3
9�8 1 1 1 c 3
9�9 1 c

Table 2.1. Error matrix for 60 subjects (Campbell & Graham 1985, ap-
pendix A). Each element represents the number of times a product occurred
as an incorrect answer to the corresponding problem (c = correct). Given a
total of 8640 trials (each subject tested on 4 blocks of 36 problems), and an
error rate of 7.65 per cent, it appears that each “c” in the table corresponds
to an average of 125 correct recalls. In addition to the errors shown here,
Campbell & Graham labelled 17 errors above 5�4 as involving products less
than 20.

Errors
Campbell & Graham (1985) found that adults under mild time pressure make errors at
the rate of 7.65 per cent. These errors are distributed as shown in table 2.1. Errors tend to
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be clustered around the correct product. More specifically, the errors can be classified as
follows (after McCloskey, Harley & Sokol 1991):

� Operand errors, for which the erroneous product is correct for a problem that shares
a digit (operand) with the presented problem. For example, 8�8=40 is an operand
error because the problem shares an operand, 8, with 5�8=40.

� Close operand errors, a subclass of operand errors, where the erroneous product is
also close in magnitude to the correct product. That is, for the problem a � b, the
error will often be correct for the problem (a � 2)� b or a � (b� 2). An example is
5�4=24. This phenomenon is referred to as the “operand distance effect”.

� Frequent product errors, where the error is one of the five products 12, 16, 18, 24 or
36. These products happen to occur more frequently than most in the multiplication
table defined over integer operands from 2 to 9.

� Table errors, where the erroneous product is the correct answer to some problem in
the range 2�2 to 9�9, but the problem does not share any digits with the presented
problem (e.g., 4�5=12).

� Operation errors, where the error to a � b is correct for a + b. These errors occur
even in blocks of problems which only contain multiplication problems. Hence,
it is unlikely that they are only the result of a perceptual slip (Winkerlman &
Schmidt 1974).

� Non-table errors, when the answer is not a product found in the multiplication
table. For example, 4�3=13 is a non-table error because 13 is not a number found in
the multiplication table defined over 0�0 to 9�9. In the Campbell & Graham study,
only 7.4 per cent of errors were in this category, and they are not shown in table 2.1.

The main error categories are summarized in figure 2.2.
Table 2.2 summarizes the distribution of errors shown in table 2.1. For comparison, the

results from a similar study by Harley (1991) are also shown. The statistics for the Harley
column, apart from error frequency, were recomputed from Harley (1991, appendix B).
As can be seen from the table, most errors are operand errors, and more specifically, close
operand errors. Both studies agree on this, but note the difference in the operation errors
row. Harley’s study included the 0�0 to 9�9 problems for which there are numerous
errors of the form 0�N=N. Approximately 11 per cent of the errors were 0�N=N errors,
and these have been classified as operation confusion errors in table 2.2.

The RT and errors are tied together by Campbell’s (1987, p. 110) observation that there
is a strong correlation of 0.93 between error rate and RT. That is, the problems on which
a subject is slowest are also the problems that the subject often gets wrong.

2.1.2 Neuropsychological constraints
Any good model of a cognitive skill should be structured in a way that is similar to the
equivalent human system. Assuming that brain damage can selectively impair parts of
this structure, then it is reasonable to expect that the model can be damaged to behave in
ways that brain-damaged individuals do. That is, results from brain-damaged subjects
suggest the question: “What must the normal system be like in order that, subsequent to
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Figure 2.2. Slip categories. Note that 4�3=13 is a non-table error because the
number 13 does not appear as a product in this table.

Campbell Harley
& Graham

Operand errors 79.1 86.2
Close operand errors 76.8 76.74
Frequent product errors 24.2 23.26
Table errors 13.5 13.8
Operation error 1.7 13.72
Error frequency 7.65 6.3

Table 2.2. Percentage breakdown of errors. Figures are mean values for sixty
adults tested on 2�2 to 9�9 from Campbell & Graham (1985, appendix A),
and 42 adults tested on 0�0 to 9�9 from Harley (1991, appendix B). For the
Campbell & Graham data, the operand error and operation error percentages
are an approximation due to incomplete data.

selective damage, performance breaks down in just the ways observed?” (Sokol et al. 1991,
p. 355).

Results from brain-damage studies (e.g., Sokol et al. 1991; McCloskey, Aliminosa &
Sokol 1991) offer further constraints on models, in addition to the empirical findings
reported above.

Brain damaged subjects, unlike normals, make a number of omission errors, respond-
ing to problems with “don’t know”. For example, McCloskey, Aliminosa & Sokol (1991,
p. 177) report that two subjects failed to produce answers for 24 and 46 per cent of trials.
On the trials where the subjects did produce incorrect answers, there was a tendency
for larger problems to show greater impairment than smaller problems. However, this
impairment was non-uniform. For example, one subject (SB) had an error rate of 63 per
cent on 8�3 and 7�4, but was correct when answering 8�6 and 7�6. The errors made
tended to follow the distribution discussed above: most of the errors were close operand

10



errors.

2.1.3 Rule based processing
Figure 2.3 shows the RT for problems 0�0 to 9�9. There are persistent statements in
the literature that zero and one times tables are governed by procedural rules. Evidence
cited to support this notion comes mostly from the relative RTs of zero problems. See, for
example, Campbell & Graham (1985, p. 341); Miller et al. (1984, p. 51); Stazyk, Ashcraft
& Hamann (1982, p. 334).

However, the most persuasive arguments for a separate mechanism for zeros and
ones problems comes from studies involving brain-damaged subjects. Sokol et al. (1991)
reports that one patient (PS) showed errors of 0�N=N on almost all 0�N problems, and
then suddenly improved to almost perfect performance on all the zeros problems (p. 358).
That is, unlike other problems, zero problems show uniform impairment.

Further support comes from remediation studies (McCloskey, Aliminosa & Sokol 1991,
p. 186–7). Patient JG was trained on the problems 0�8, 0�9, and some non-zero problems,
including 2�7. Although training on 2�7 leads to improvement on 7�2, JG was correct on
only 5 out of 355 problems that were not trained on. In stark contrast is the generalization
on zero problems: after training on two zeros problems, JG was 99.3 per cent correct on all
other untrained zero problems (139 of 140 problems correct). Similar remediation results
suggest that a rule N�1=N is also utilized.

Despite the convincing evidence for a rule-based mechanism, it is not clear why certain
errors occur for zero problems. The majority of errors for zero problems take the form of
0�N=N (Harley 1991). McCloskey, Aliminosa & Sokol suggest two explanations for why
these errors occur.

The first possibility is that the wrong rule is retrieved. That is, when presented with a
0�N problem, the subject attempts to retrieve the rule 0�N=0 but actually finds 0+N=N
or 1�N=N. However, it is not clear why 0�N=N errors occur for the problems 0�1 and
1�0. In these cases, the rule 1�N=N should be applied to give the correct answer.

Another possible source of 0�N=N errors could come from stored incorrect rules.
That is, the subject stores a rule like 0�N=N alongside the correct rule. McCloskey,
Aliminosa & Sokol offer a scenario for how such rules are acquired: the incorrect rule
0�N=N is a generalization of the rule learned from addition, 0+N=N. The generalization
is: any operation involving zero and N results in N. Ordinarily the correct rule will
be used either because it was the most recently learned rule, or because it is the most
specific rule. The problem then is how brain-damage and normal forgetting can lead
to the selection of the incorrect rule in preference to the correct rule. One account is
that “…the correct rule [0�N=0] seems essentially arbitrary to many individuals, where
as the incorrect rule seems to fit better with other knowledge of arithmetic. In other
words, to some individuals the incorrect rule may make more sense than the correct rule”
(McCloskey, Aliminosa & Sokol 1991, p. 192).

McCloskey, Aliminosa & Sokol conclude that, although the account of rule-based
arithmetic is speculative, arithmetic recall is characterized as an associate network of facts
for 2–9 problems, augmented with rules used for zero and ones problems. However, the
problem is that no models have been produced which incorporate rule-based processing
together with recall from an associative network. Such a system needs to be built to
articulate the details of rule-based recall. Also, it is not yet clear exactly what constitutes
a rule (Kirsh 1990; Clark 1993). Given these uncertainties, it may be worth first pursuing
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Figure 2.3. Plot of mean correct RT per multiplication table collapsed over
operand order for: median RT of 42 adults (Harley 1991, appendix D);
median RT (adjusted for naming time) of 6 adults (Miller et al. 1984, table A1).

single mechanisms models to account for the rule-like behaviour. This is further discussed
in section 3.5.2.

2.1.4 Summary
The major findings which constrain a model of arithmetic recall are:

1. The problem-size effect indicates that problems with large operands tend to take
longer to answer than problems with small operands.

2. There are exceptions to the problem-size effect, most notably the 5 times table and
tie problems.

3. The majority of errors are operand errors, where the incorrect answer is correct for
a problem that shares an operand with the presented problem.

4. Recall, when damaged, shows a pattern of non-uniform damage, rather than a
global degradation in performance.

5. Zero and ones problems appear to be rule-governed.

Arithmetic is a well learned skill: a large number of individuals are taught and “know”
the times tables. Yet some problems are easier than others, and people do make occasional
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mistakes when asked to recall these supposedly well-learned facts. What mechanisms
capture the time-course of this skill, and how are errors produced? What kind of learning
process installs these mechanisms?

2.2 Previous models

Various approaches have been taken to modelling the above phenomena. Examples
included: counting models, sometimes called digital models; analogue models; network
models; and procedural models, based around rules for arithmetic.

Counting models assume that adults have internalized children’s counting strategies.
For example, one of the most successful counting models is the MIN model (Groen &
Parkman 1972). To add two numbers, n and m, two counters are postulated: the first is
set equal to the larger of the two numbers (say, m); the second is used to increment the
first counter n times. Hence, addition is achieved by repeated incrementing, and the RT
will be a function of the smaller (MIN) number. Although this model is a good predictor
of addition RT, there are problems when the system is applied to multiplication.

No counting account has been proposed for multiplication, but as Stazyk et al. (1982)
note, there are some straightforward ways to extend the model to multiplication. The
simplest scheme assumes that the first counter is set to zero, and then incremented by the
larger number, m, for a total of n times. However, this proposal requires that the subject
be able to count not only in 1s, but also 2s, 3s, etc, and that the size of the increment
should not effect the speed of counting. Ashcraft & Stazyk (1981, p. 47) note:

Since the counting model proposed for addition asserts that subjects count
in units of one, the suggestion that adults can count in units of varying size
when multiplying, but not when adding, lacks internal consistency.

In addition, confusions between addition and multiplication, namely operand er-
rors, also suggests a single system for both skills (Winkerlman & Schmidt 1974; Miller
et al. 1984), and this is something difficult to capture in a counting system. One of the
reasons for postulating the MIN model was to capture the problem-size effect. However,
the counting model has difficulties with the 5s and ties exceptions to the problem-size
effect.

Little progress has since been made with counting models, and no detailed models of
errors have been proposed. Attention has been focussed on network models, and these
are discussed in this chapter (see Cornet, Seron, Deloche & Lories 1988, for a detailed
review of counting models and other approaches).

The set of network models include the most explicit models that exist. Unlike the
reconstruction of answers performed by counting models, network models assume an
associative memory structure. Activation is assumed to spreading between problems and
answers nodes. An review of network models is given by McCloskey, Harley & Sokol
(1991). Two of these models are presented next.

2.2.1 Distribution of associations
One of the more interesting network models is the distribution of associations (DOA)
model proposed by Siegler (Siegler 1988, 1987; Siegler & Shrager 1984). The model is an
account of strategy choice—why retrieval is used sometimes, and other methods, such as
repeated addition, are used on other occasions. The network of associations that make
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Figure 2.4. The problem-to-answer representations for the distribution of
associations model. Line thickness depicts strength of association (figure
based on figure 3 from McCloskey, Harley & Sokol 1991).

up an adult’s multiplication memory is formed by the success and failures of children’s
back-up strategies.

Each problem is connected to a set of candidate answers consisting of the correct
product plus some incorrect answers. For adults it is assumed that the strongest associ-
ations are to correct products (see figure 2.4). For children, however, the distribution of
associations will be “flatter”, representing limited experience with multiplication.

The recall process begins by randomly selecting a confidence criterion. Siegler (1988)
notes that “…even 1-year-olds often will not state an answer that is suggested to them
if they do not believe the answer is correct. Such resistance suggests that they possess a
standard, akin to a confidence criterion, for stating an answer” (p. 261).

An answer for a presented problem is retrieved according to the strength of the
association between the problem and the answer: the stronger the association, the more
chance the answer has of being selected. If the association to the proposed answer is
stronger than the confidence criterion, the answer is stated. In the cases where the strength
falls below the confidence criterion, another answer is selected. This loop continues until
a maximum number of attempts has been made (1, 2 or 3—a number randomly selected
at the start of the retrieval process).

If no answer has been stated after the maximum number of attempts, one of two
processes can, probabilistically, follow: sophisticated guessing, or problem elaboration.

Sophisticated guessing is just another attempt at retrieval from the associative net-
work. However, no comparison is made to the confidence criterion: the answer is
immediately stated.

For elaboration, the model “writes down” the problem. For human subjects, this is
done with pencil and paper. For the computer model, this is implemented by temporarily
boosting the strength of the associations by 5 per cent. Another retrieval attempt is then
made, and the answer stated if it exceeds the confidence criterion—and this is more likely
with newly increased strengths. Siegler (1988) comments: “The written elaboration may
itself be associated with possible answers to the problem” (p. 261). It is not clear why
this elaboration would help given the modular structure of arithmetic skills outlined in
chapter 1. That structure indicates that presentation form (visual Arabic numerals or
verbal) is independent of the arithmetic fact store. Nor is it obvious how increasing
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associative strengths is equivalent to the writing down of a problem.
If no answer is given after elaboration, a back-up strategy is used. The strategy

presented by Siegler is repeated addition, where a counter is incrementing by n, m times
for the problem n�m.

Reaction time
RT is dependent on how many of the above stages were processed before an answer was
produced. Problems produced by repeated counting have to have passed through the
recall stage and either elaboration or sophisticated guessing. Siegler (1988, p.272) reports
that the RTs produced by the model can match those of children and adults. The cause of
this is outlined below.

Errors
Errors can arise from either: retrieving an incorrect answer that happens to exceed the
confidence criterion; or from miscounting when using a back-up strategy. For miscount-
ing, there is a fixed probability that a number is added twice or skipped over. Also, two
numbers could be added incorrectly. For example, on 2�8, the model could produce
8 + 8 = 15. The frequency of these errors is proportional to the size of the number being
added, except for 5s problems which are added as accurately as 2s. Siegler reports that
children are particularly accurate at adding 5s, hence the exception.

Learning
Every time an answer is produced, the association between the problem and answer is
increased. Due to (presumed) external reinforcement, the increment is twice as much for
correct answers than incorrect answers.

Initially, the associative strengths are small (0.01), so retrieval is likely to fail, and the
repeated counting strategy would be used. The correct association will form after the
problem had been presented a number of times assuming that repeated counting usually
produces the correct answer. As associations grow in strength, recall will succeed more
often, producing more correct answers in a shorter RT. Hence, the model accounts for
the development towards relying on recall and for RTs to decrease.

The problem-size effect is derived from the assumption that repeated counting is more
prone to errors on larger problems. This is seems likely because more addition steps are
needed for larger problems. So for larger problems, repeated counting will produce a
distribution of associations that is “flatter” for large problems than small, resulting in
longer RTs and more errors. Exceptions to the problem-size effect can be incorporated
into the model. An example is the 5s problems discussed above for which the back-
up strategy reliably produces the correct answer, meaning that strong associations will
quickly form for these problems.

Problems are also presented according to the frequencies found in a school textbook.
As smaller problems tend to be presented more often than larger problems, this adds to
the effect (discussed further in section 3.3.1).

Discussion
Siegler’s DOA model is based on an associative network in which problem nodes are
linked to candidate answers. “Associations across arithmetic operations (e.g., addition
and multiplication) are also hypothesized to be present in the network” (p. 259), but this
is not discussed in any detail by Siegler.

Operand errors are accounted for by the way the back-up strategy miscounts. When
adding a group of 6s for the problem 4�6, the strategy may add one too many, resulting
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in 30, or one too few, 18. Both are operand errors. Moreover, because the strategy is more
likely to err once, rather than twice or more, operand errors will be close to the correct
product.

The other way in which the back-up strategy can produce an incorrect answer is by
adding two numbers and getting the wrong result (e.g., 2 + 2 = 5). It turns out, from
McCloskey, Harley & Sokol’s (1991) analysis, that this behaviour will produce more non-
table errors than table errors. This is the opposite of the results reported by Campbell
& Graham (1985) for adults. Siegler presumes that counting errors will be distributed
around the correct answer. That is, the error 6�7=41 (under counted by 1) and 6�7=43
(over counted by 1) occur more often than errors that result from larger miscounts. Given
this assumption, McCloskey, Harley & Sokol note that for the 64 problems 2�2 to 9�9,
errors of the form (n�m)�1 turn out to be non-table errors twice as often as table errors.
Hence, Siegler’s model predicts the opposite of the observed situation, where table errors
occur twice as often as non-table errors for adults.

Although more explicit than many models, there are some details missing from the
DOA account. For example, answers are retrieved from the associative network with
a probability proportional to associative strength. This aspect of the model is not fully
elaborated: is it a spreading activation system? If so, how does activation spread? By
what mechanism are responses selected? As will be shown later, many models have
focused on just this aspect of retrieval.

The model contains a number of separate mechanisms: recall, elaboration, sophisti-
cated guessing, and back-up. No details were given about the nature of the overall control
mechanisms: what factors determine why sophisticated guessing is used sometimes (20
per cent of trials), but elaboration used at other times? How and why is the associative
strength temporarily boosted for the elaboration stage?

The simulation results reported by Siegler (1988) were for just 20 problems due to
limited resources, and this should be extended.

Finally, it is assumed that back-up strategies behave in the ways specified. It would be
interesting to see a more detailed account of the structure of these strategies, explaining
why they err in the ways that they do.

The DOA model is an interesting account of strategy choice. As a model of recall of
multiplication facts, it needs to be further specified.

2.2.2 Network interference
Campbell & Graham’s (1985) “network interference” (NI) model does not concern itself
with multiple strategies as the Siegler model does. Rather, just the associative retrieval
component is considered.

Figure 2.5 shows the architecture of the model, which consists of four kinds of units:

1. Operand units, to encode the 6 and 7 of 6�7.

2. Problem units, activate only for specific problems.

3. Product units.

4. General magnitude units.

Operand units are connected to the products in the operand’s table. That is, the operand
unit 3, for example, is connected to the products 6, 9, 12, 15, and so on. “Type” product
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Figure 2.5. Network interference model. Based on figure from McCloskey,
Harley & Sokol (1991).

units are used—there is only one product unit representing 24, which is activated by 4�6
and 3�8. The alternative to type product units is token units, in which there would be
two 24 units, one activated by 4�6 and the other by 3�8.

To disambiguate certain answers, a set of problem units are used. For example, with
type product units, there is no way to choose between 32 and 24 when 8 and 4 are
presented to the system: 32 is doubly activated by the 4 and 8 in 4�8; but 24 is also
activated, once by the 8 (3�8=24), and again by the 4 (4�6=24). With problem units, the
correct product will receive an extra input.

Problem units also activate the magnitude units, which in turn activate an appropriate
set (large, medium, etc.) of product units. This allows the subject to estimate the size of
the answer. Product units that have answer digits in common—such as 12 and 15, or 12
and 32—are connected together.

Learning
The NI model suggests that problem presentation frequency and order determine the
strengths of the associations in the network. Campbell & Graham (1985) assume that
smaller problems are learned first, and are presented more frequently, than larger prob-
lems. These assumptions are not unreasonable, and chapter 3 looks in detail at pre-
sentation frequencies. However, for problem frequency there is an inherent difficulty
in discovering the actual frequency experienced by subjects. Siegler’s results are based
around the frequency of problems from school textbooks, but children certainly experi-
ence arithmetic problems other than those found in textbooks.
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Nevertheless, given the assumptions stated above, Campbell & Graham predict that
the first problems learned will impair the learning of later problems (proactive inter-
ference). These smaller learned problems will also act as a source of error for larger
problems. That is, during learning, the smaller problems will not have many alternative
answers to produce as an error.

Errors
Operand errors may occur because each operand unit is connected to a set of product
units. On some occasions, the wrong product may be selected, giving an operand error.
Close operand errors are produced because the general magnitude units activate products
that are approximately the correct magnitude for the presented problem.

Errors also occur because of false associations. During learning, inputs are associated
with the correct product. However, due to the fact that activation spreads, other product
units will be active. Associations will also be made to these, slightly active, false products.

Learning usually occurs in lessons, where a number of problems will be presented and
solved. Campbell & Graham argue that residual activation of problem units and product
units other than the one being solved will be associated with the current problem. In
this way, false associations are formed, which may be produced as errors. In particular,
it is assumed that problems close in magnitude (e.g., 7�8 and 7�9) are more likely to
be learned in the same lesson than more distant problems (such as 7�8 and 7�2). As
McCloskey, Harley & Sokol (1991) note, this suggestion is not backed by any empirical
evidence. If true, it would further contribute towards the production of close operand
errors.

The connections between products that share digits will produce some table errors,
but this seems rather “ad hoc—the associations between answers sharing a digit seem to
play no role in the model other than that of explaining certain table errors” (McCloskey,
Harley & Sokol 1991, p. 393).

As all the answers units correspond to a product, there is no account of non-table
errors.

Retrieval
One of the founding ideas behind the NI model is that the activation of incorrect answers
interferes with recall of the correct answer. That is, as interference increases, RT will
become longer, and there will be an increased chance of an error.

As mentioned, retrieval is a spreading activation process. The rules governing the
spread of activity are not specified, and nor is the response mechanism. Presumably the
most active product unit is selected as the answer. RT is assumed to be a function of
answer activity, but again, this is not specified.

Discussion
The lack of specific detail with this model (no activation rules, no response mechanisms
for correct or erroneous answers) is not surprising given that the system was not im-
plemented. As it stands the system is a conceptual analysis of arithmetic and raises a
number of questions:

� Why so many kinds of nodes? What does each knowledge source contribute to the
model? Are they all necessary?

� How do these knowledge sources develop? In particular, how are the magnitude
units formed?
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� How are problem-size exceptions handled? Although the system can accommodate
exceptions, it would presumably have to be via problem frequency or order. Camp-
bell & Graham (1985) briefly comment on the possibility of a rule-based system for
5s (the product should end in zero or five), but do not pursue it in any depth.

� By what means are the associations strengthened? A brief description was given,
but without more specific learning mechanisms it is not possible to determine the
relative importance of each kind of link.

The model itself lacks detailed mechanisms, but provides a useful source of ideas for
what factors may contribute to the phenomena.

2.3 Previous connectionist models

The rest of this chapter considers those models that are strongly connectionist. It seems
apparent that connectionism is appropriate for this task, and that the rigour of imple-
mentation could flesh out some of the modelling issues introduced above.

The first connectionist account was built and developed by a group at Brown Univer-
sity from 1989 onwards (J. A. Anderson, Spoehr & Bennett 1991; Viscuso, J. A. Anderson
& Spoehr 1989; Viscuso 1989; J. A. Anderson, Rossen, Viscuso & Sereno 1990). This ac-
count is unsatisfactory for reasons set out in section 2.3.1. Graham (1990) also performed
some experiments with a connectionist network, but the model lacks an explicit recall
mechanism.

No less than three other connectionist models were built in answer to McCloskey,
Harley & Sokol’s call to “shift from a demonstration of the framework’s basic merit to
the hammering out of detailed, fully elaborated models” (1991, p. 394). These models
were developed independently at more-or-less the same time. The first to be published
was the model by McCloskey & Lindermann (1992), followed by the model described in
chapter 3 (Dallaway 1992a, 1992b). The most recent model was built by Rickard, Mozer
& Bourne (1992). The connectionist models are described below, and compared in the
next chapter.

2.3.1 Brain-state-in-a-box
The brain-state-in-a-box (BSB) model (J. A. Anderson, Spoehr & Bennett 1991; Viscuso
et al. 1989; Viscuso 1989; J. A. Anderson, Rossen, Viscuso & Sereno 1990) has been pre-
sented in a number of forms. Initially it was built for “qualitative multiplication”, in
which answers are only “ballpark estimates”. That is, the model had a small number
of answers (e.g., 3�1=5, 3�2=5, 6�2=10). Most of the BSB simulations are of qualita-
tive multiplication, but J. A. Anderson, Spoehr & Bennett (1991) have started to model
quantitative multiplication.

The most recent simulations present a network with 1266 units. The units are split
into three groups (see figure 2.6): two sets of units for the two operands, and another for
the answer. Each of these three groups consists of two sets of units: a bar encoding of the
number, and an arbitrary symbolic label.

The bar encoding is the activation of a consecutive number of units. That is, a number
is encoded by the positioning of the bar along the set of units, forming an “analogue”
encoding. The units are arranged in an approximately logarithmic fashion, so that large
numbers are less distinct from each other than smaller numbers.
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Figure 2.6. BSB network. This figure is a simplified picture of the 1266 unit
network described by J. A. Anderson, Spoehr & Bennett (1991).

Originally, the symbolic component encoded the name of a number (e.g., “one”) based
on the ASCII representation of characters. McCloskey & Lindermann (1992) noted that
this representation is unmotivated. Problems are usually encountered as Arabic numbers
or spoken words, but almost never as written words, such as “eight times six”. Yet, it
was just this spelling of the numbers that was used as input to the network. It now seems
that the symbolic input is no longer supposed to represent the spelling of a number, and
is just presented as a random vector. This input still remains unmotivated, and it is not
clear what purpose it serves in accounting for the phenomena.

For each operand and answer there seems to be 150 units to represent the symbolic
and bar part. From the reports on the system, it is not clear how the units are divided up
for each input field, or how wide the bar is. This uncertainty is also commented upon by
McCloskey & Lindermann (1992).

The large number of units means that simulations require a large amount of CPU
time. Because of this, only 32–34 facts are trained. In an attempt to scale the system to all
the multiplication problems, an extra field was added to the answer field. This new field
contains 60 units to encode nine “integer symbols” and “…tries to capture hazy intuitions
about two digit numbers having a most and least significant digit” (J. A. Anderson, Spoehr
& Bennett 1991, p. 7). No further details were given about this new field: does it represent
the “tens” or “units” part of the answer? How does it affect recall?

For training, the operand and answer units are clamped with desired activations, and
the weights between the units are adjusted using the Widrow-Hoff error correction rule.
In previous simulations (Viscuso et al. 1989), each problem was presented 30 times, in a
random order.
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Recall
When simulating recall, the operand units are clamped, and the answer units compute
their activation as follows:

oi(t+ 1) = �
X

j

wijoj(t) + oi(t) + �fi(0)

where: oi(t) is the output of unit i at time t, which is limited to be between �1 and +1;
� is the feedback constant;  is the decay constant; and fi(0) is the external input to the
unit, multiplied by a constant �.

The state of the system representing associations between operands and answers
forms an attractor. The units in the network continue to update until the system arrives
at one of these point attractors. Cycling continued until “all of the vector elements were
saturated” (Viscuso et al. 1989, p. 150). That is, there was a read out threshold, and once
all the units had exceeded this threshold, processing stopped. The number of cycles
required to reach this point is taken as the RT for the presented problem. On some runs
updating was stopped when a maximum number of cycles (60) was reached.

Reaction time
J. A. Anderson, Spoehr & Bennett (1991) report that a number of their BSB simulations
exhibit a problem-size effect. The 32 simulated RTs reported in their paper do seems to
follow the problem-size effect. For this small sample of problems it is not clear if there
are exceptions for 5s, or if tie problems are accounted for.

J. A. Anderson, Spoehr & Bennett agree with Campbell & Graham that problem
frequency and order are important causes of the problem-size effect. It does not appear
that the BSB simulations make use of problem order or frequency, although it is noted that:
“Practice and order effects are, of course, easy to model within an associative framework”
(p. 13).

It is further suggested that the problem representation is also responsible for the
problem-size effect: “…the codings for problems of increasing magnitudes may get suc-
cessively more ‘muddled together’”. However, “…it does not appear that the problem-
size effect resulting solely from the bar code compression is a particularly robust feature
of the modeling” (p. 13).

Verification
With the architecture of the BSB model it is possible to study the verification task. Distant
false problems (such as “5�2=60?”) and close false problems (“5�2=20?”) were presented
to the network by clamping both operand and answer units. If, during processing, the
network overwrites the answer field, the problem is considered rejected. If the answer
field remains unchanged, the problem is accepted. Simulations showed that the network
would reject distant products faster than products that were close to the correct product.
The system also accepted near false products, but no distant false products.

Errors
Adults are quite capable of learning the multiplication facts, although with some difficulty.
Any errors are, as McCloskey & Lindermann (1992) calls them, occasional: errors in
retrieval, and not predominantly errors resulting from false beliefs. This is not the case
for the BSB model. The network, as presented, is simply incapable of learning all the
associations. For example, on 8�4 the network produced the answer 24 or 28, but never 32.
This runs against the notion that slips are one-off run-time errors, rather than permanent
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disabilities. Correct answers are reconstructed for about 70 per cent of the problems.
The errors that are made are close in magnitude to the correct answer. Examination

of the results given in J. A. Anderson, Spoehr & Bennett (1991) shows that some of the
errors are close-operand errors, others are non-table errors. No details are given on the
proportions of the errors generally, or how non-close operand, table or operation errors
occur.

Discussion
Although there have been a number of papers describing the BSB model, details of the
model are still unexplained, and only small scale simulations have been performed. A
number of points need to be clarified:

1. The motivation for the symbolic component of the representation, and the role it
plays in explaining the phenomena, is uncertain.

2. The details of the input representations (e.g., the “roughly logarithmic” operand
units) need to be given.

3. The 60 units used to encode “integer symbols” in the answer field remain a mystery.
What do they represent? What is the motivation for it?

4. There is no account of occasional, run-time, errors.

5. The RT results do not cover ties, or the other exception to the problem-size effect.

6. The results from qualitative simulations are interesting, but what bearing does this
have on the multiplication done by people?

McCloskey, Harley & Sokol (1991) comment that the Viscuso et al. (1989) “proposal
has several limitations and cannot be considered a well-articulated model”, but add that
“the [neural net] approach probably merits further exploration” (p. 395).

2.3.2 Backpropagation
Graham (1990) has run a large number of simulations looking at how a connectionist
network can store arithmetic facts. His model contained two sets of input units to encode
the two operands connected to a set of hidden units. The hidden units were connected to
a set of output units divided into tens and units fields. Various parameters were explored,
including: number of hidden units; learning rates; input and output encodings; problem
presentation ordering; and rehearsal schedules detailing when and how often trained
problems were re-presented.

A problem-size effect was found by training on small problems first. The problems
2�2 to 9�9 were split between a large group (products greater than 32) and a small group.
Training with backpropagation on the small group first produced a problem-size effect
for the accuracy of the network. That is, more smaller problems were correct than larger
problems.

Errors were measured by testing the network at various stages during learning, at 20
per cent correct and 70 per cent correct. These errors were mainly operand errors.

Graham’s work cannot be considered as a model of the recall process because it
provides no explicit retrieval processes by which errors and RTs can be measured. Nev-
ertheless, it is a useful study, and suggests that connectionist system may be useful in this
domain.
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Figure 2.7. Interactive activation network (from Rickard et al. 1992, figure 5).

2.3.3 Interactive activation
Like the BSB model, the interactive activation (IA) model proposed by Rickard et al.
(1992) is a settling network. The architecture of the network is shown in figure 2.7.

There is just one set of input units to represent both operands. Each operand is
connected, by a fixed weight, to every problem unit which contains that operand. The
problem level is motivated by the success of other associative memory models that
use a part-whole hierarchy—such as the interactive activation model of word perception,
(McClelland & Rumelhart 1988, chapter 7). At the problem level there is mutual inhibition
(again, by a fixed value) to implement the constraint that only one problem unit should
be active. A set of type product units receive activation from, and send activation back to,
the problem units. There are also false associations between problem units and product
units. All the weights in the network are hand-crafted; learning is not accounted for.

Processing begins when a problem is presented and the appropriate operand units
are clamping on. A multiplication unit is also activated for all problems, and presumably
future extensions will include units for addition, subtraction and division, too. The
correct problem unit will receive input from three nodes (the two active operands and
the multiplication unit), and table-related problem units will receive input from just two
nodes (one of the operand units and the multiplication unit). Hence, the correct problem
unit will be most active, inhibiting other units, although table-related problems will be
slightly activated.

Note that for tie problems only one operand unit would be activated. This means
that tie problem units will only be activated by two inputs, as will all the other problem
units associated with the operand. In order for the correct problem unit to be activated,
Rickard et al. include a “tie” unit as part of the input. This unit is activated whenever
a tie problem is presented, supplying the tie’s problem unit with three inputs. The
motivation for the ties unit stems the notion that there is an “…intrinsic uniqueness in the
representations/processes…that underlie performance on these [tie] problems” (Rickard
et al. 1992, p. 18). That is, there is “something special” about tie problems, and this is
represented by an extra bit on the input layer.

All the units in the IA network are updated synchronously. The activation of a unit
is just the net input to the unit, but is never allowed to drop below 0 or go above 1.
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Processing stops when a product unit exceeds a threshold of 0.8.
As described so far, the system will always produce the correct response. Rickard

et al. report that an incorrect product units never exceed an activation of 0.1. RT is the
number of cycles it takes before a product unit exceeds the threshold. All problems reach
threshold at the same time (after 43 cycles).

Response times
To explain the problem-size effect, Rickard et al. hand modified the problem-to-product
weights. It is assumed that the more frequently occurring problems will cause stronger
associations between units. To implement this, the problem set was split into two sets:
“small” problems, with products of 30 or less; and the remaining “large” problems. Based
on the assumption that larger problems are experienced less often, the weights between
all units involved in the larger problems were decremented by 10 per cent from the values
given in figure 2.7. After this change 42 cycles were required for small problems, and 51
for the large problems.

False associations are also assumed to interfere with retrieval. To simulate this, false
connections were made between a problem and various product units—one each for an
operand error, close operand error, table error, and non-table error. The weights for
the incorrect associations were set at 0.025 for problem-to-product links, and 0.0125 for
product-to-problem. With the model modified in this way (independently of the changes
described above), cycle time increased to between 43 and 48 cycles. Again, assuming that
larger problems have stronger false associations, Rickard et al. state that false associations
can contribute to the problem-size effect.

Errors
Errors are only accounted for implicitly. It is assumed that the probability of an error
occurring is proportional to the activation of the product during cycling. As described
above, the products associated with operand errors and close operand errors are more
active during processing than table-unrelated products. Hence, given that more active
products are more likely to be errors, the IA model predicts more frequent operand errors
than table-unrelated errors.

Primed production and verification
The primed production task is simulated by activating the product node corresponding
to the prime, and allowing the network to cycle 6 times to simulate brief exposure.
Activation is then removed from the primed node, and retrieval begins as described
above. When the correct node is primed, the system’s response is faster: 38 cycles
compared to 43 without priming. The IA system slows when an incorrect prime is
presented, and slows more when the incorrect prime is related to the correct answer.
When false associations are included this increase in RT is even more prominent. These
results are consistent with those reported for human subjects.

Similar results are reported for the verification task. The verification task is simulated
like primed production, but leaving the candidate answer mildly activated (external
activation of 0.01) for the duration of the experiment. False problems slow the system,
and this varies with the degree of similarity between the correct and primed product.
Note that the system is not changed in any way to output “yes” or “no” in answer to the
verification task. The answer is selected by the mechanism described above. Presumably,
the decision as to the whether the candidate product is correct or not, is a stage to be
added after the production of a product.

24



Rickard et al. (1992) also introduce a verification strategy based on “resonance” as an
alternative to the above method. Resonance is defined as a global measure derived from
Smolensky’s (1986) “harmony” measure:

harmony =
X

ij

oiojwij +
X

i

extioi

where oi is the output of unit i, wij is the weight between units i and j, and exti is
the external input to unit i. The harmony, or resonance, of the system, as defined here,
will increase as the “self-consistency” of the network increases. That is, the correlations
between active units connected by strong positive weights increases. During verification
tasks, Rickard et al. show that harmony does increase across cycles, and it increases faster
with a correct candidate. Harmony increases slowly when an operand error candidate is
presented, but increases more quickly as the table-relatedness of the candidate is reduced
to table-unrelated candidates. “Thus, under the assumption that there is a criterion
resonance for responding ‘true’, the probability of responding ‘true’ incorrectly based on
resonance in memory is greater when a candidate answer is table-related and/or has an
incorrect association to the problem representation” (Rickard et al. 1992, p. 28). There is
no discussion of how the global resonance measure is computed by the system.

Discussion
The IA model has a general problem: there are too many assumptions, and not enough
quantitative simulations. Indeed, it is not possible for Rickard et al. to produce many
simulations without specifying some more recall mechanisms. In particular, there needs
to be an explicit account of error production. As J. R. Anderson (1983, p. 88) notes:

Activation does not directly result in behaviour. At any point in time a great
deal of information may be active…There must be processes that convert this
activation into behaviour. A serious gap in much of the theorizing about
spreading activation is that these processes have not been specified.

This criticism applies directly to the IA model. It is not enough to assume certain
kinds of associations will form, or that error probability is proportional to activation. It
was already clear that associative networks of many kinds (e.g., Graham 1990; Viscuso
et al. 1989) could be constructed to account for some of the empirical observations on
human behaviour. As McCloskey, Harley & Sokol (1991) have commented, network
models show a great deal of promise for this domain, but “detailed, fully elaborated
models” are required. The IA model lacks these details:

1. There is no learning mechanism. As discussed above, the IA model has a set of
hand-crafted weights. These weights are sometimes changed to reflect assumptions
about strong, weak or false associations. But the point of interest is in exactly how
the distribution of weights is formed to conform to these assumptions.

2. The problem level in the IA model clearly plays an important role, accounting for
many of the interesting results. However, no account is given of why or how this
particular representation should develop.

3. The assumptions about the distribution of associations are based on the work of
Siegler (1988). However, as described in section 2.2.1, there are problems with this
account.
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Figure 2.8. Architecture of MATHNET (from McCloskey & Lindermann 1992, figure 3).

4. No detailed RT results are given. One of the methods used to account for the
problem-size effect was to decrementing the weights of the “large” set of problems.
Does this mean that only two different RTs could be generated, one for the small
problems and one for the large? The other modification of adding false associations
was done independently of the decrementing of weights, and it is not clear how
these two methods interact without a detailed comparison to human human RT
data.

5. No account is given for the speed of the tie and 5s problems.

6. No account is given of zero- and one-times problems.

7. The IA model is particularly let down by the lack of an explicit mechanism to
account for incorrect retrieval. Without a mechanism for this the system cannot
actually produce errors, regardless of internal activity.

It remains to be seen if the system can be modified to accommodate the above.

2.3.4 Mean field theory
The most well-informed of all the connectionist models is MATHNET (McCloskey &
Lindermann 1992). The architecture is shown in figure 2.8, and is based around mean
field theory (Hertz, Krogh & Palmer 1991, chapter 2) which is related to Boltzmann
machines (Hinton & Sejnowski 1986).

The 26 problem nodes are divided in to two groups of 12 nodes to encode the two
operands, and 2 nodes to encode the task—although only multiplication problems are
currently considered. The inputs feed to 40 hidden nodes. The output layer consists of
a set of 12 nodes to encode the tens part of the answer, and another 12 to encode the
units field. The output nodes are connected to each other. All weights in the system are
bidirectional.

Each operand is encoded as a bar of activity across three units. For the operands 7, 8
and 9 the input pattern would be…

7: - - - - - - - + + + - -

8: - - - - - - - - + + + -

9: - - - - - - - - - + + +
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…where + signifies an activation of 1:0 and - signifies�1:0. There are enough input units
to encode the operands 0 to 9, but only the problems 2�2 to 9�9 were discussed. The
encoding for the output fields is the same as the inputs.

Recall
In order to capture occasional errors, McCloskey & Lindermann begin with a system that
is inherently stochastic. Retrieval begins when a problem is clamped on the input layer.
The activation of the other units is computed asynchronously as follows. First the net
input to a unit is computed:

neti =
X

j

ojwij + biasi;

where wij is the weight between units i and j, biasi is unit i’s bias, and oj is the output of
unit j, calculated according to:

oj = tanh(netj=T ):

T is “temperature” of the system (discussed below).
Units are updated until the system stabilizes. This is defined as when all the units

are within 0.1 of the maximum or minimum activation values. During processing, the
temperature of the system, T , is lowered. At the start of processing T is large, which
makes the tanh function behave linearly. As T decreases, the function becomes a sigmoid,
and whenT is smaller still, the function behaves as a threshold. At the start of processing,
with a highT , units can take on any values between+1 and�1. By reducingT , the system
is forced to make a decision—units become either on or off.

A 16 step annealing schedule was used: the temperature parameter was changed 16
times. This gives 16 pairs of parameters, stating when the change is made, and the new
temperature value.

After the system has settled, the activations of the tens and units fields were indi-
vidually compared to the representations for each of the digits, 0 to 9. The closest digit,
measured by sum of squared error, was declared to be the output of the field.

Learning
The weights of the system are changed by computing the difference between the system
running with just the inputs clamped (free running), and when the outputs are also
clamped. First, the network is allowed to settle during the free running phase. For all
connected units, aiaj free, the product of activation values, is computed. Then, the system
is rerun with the output units clamped to the desired activation values, and after settling,
aiaj

clamped is computed.
The weights are then changed:

�wij = �(aiaj
clamped � aiaj

free);

where � is the learning rate, set at 0.003. The learning rule has the result that the
free running system behaves like the clamped system, producing the desired output
activations.

Initial experiments combined problem order and problem frequency. The 2s problems
were trained, and then the 2s and 3s problems, then 2s, 3s, and 4s, and so on. Each
problem set was trained for 5 epochs. Every time a new set of problems was introduced,
the new problems appeared twice in the training set, and the previously trained problems
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Operand errors 78.71
Close operand errors 71.61
Table errors 5.16
Operation error 0.0
Non-table errors 16.13

Table 2.3. Mean percentage error rates from three networks reported by
McCloskey & Lindermann (1992). For close operand errors, the non-shared
operand was within �1 of the correct digit.

occurred once.
After this, the second training phase manipulated the frequency of the problems. All

64 problems (2�2 to 9�9) were presented, but some problems were repeated to produce
a total of 256 training patterns. Smaller problems occurred more frequently than larger
problems in the training set. To implement this, the 64 problems were divided up into 7
groups based on the sum of the operands. For example, problems with a sum between
4 and 6 occurred 7 times in the training set; problems with a sum less than 9 occurred
6 times in the training set. The categorization seems arbitrary, but the overall result is a
linear skew in favour of smaller problems.

Three networks (different initial weights) were training in this way. As the system
is non-deterministic, each problem was presented 10 times to ensure that the facts really
were learned. Two of the networks were correct on all problems, and the other network
was incorrect just once.

Reaction time and errors
To simulate speeded testing conditions, the first five steps of the annealing schedule were
skipped. Each of the three networks were tested on the 64 problems 30 times. Under
these conditions the networks erred on 2.7 per cent of the trials. “Thus, the networks,
like human subjects, showed reduced accuracy under speed pressure” (McCloskey &
Lindermann 1992, p. 26). The RT of the networks exhibited the problem-size effect, but
without the dip for the 5s or an advantage for tie problems.

Under these speeded conditions the networks make errors by settling into a state that
does not correspond to the correct output. Error rates are reported in table 2.3. These
errors compare well to those reported for adults (table 2.2). However, the proportion of
table errors and non-table errors is reversed: the network shows 5 per cent table errors,
16 per cent non-table errors; for adults it is 13 per cent table errors, 7 per cent non-table
errors.

No analysis of the network (e.g., the hidden layer) has been performed, but McCloskey
& Lindermann suggest the following reasons for why certain errors are seen:

1. Similar inputs tend to produce similar outputs. Operand errors are prominent
because the representations for problems that share an operand are more similar
than problems that do not share operands.

2. Likewise, close operand errors occur because similar quantities have similar repre-
sentations: the encoding for 9 is more similar to 8 than to 3.

3. Non-table errors often consist of the correct tens digit with the units digit from a
related problem. McCloskey & Lindermann comment that it would be interesting
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to see if this is true of human non-table errors.

A number of experiments were run to determine the importance of the order and
frequency of problems. Holding frequency constant and varying the ordering of prob-
lems, as described above, did not produce a problem-size effect. Instead, just varying the
frequency of problems produced the best results. Hence, it seems that the main cause
of the problem-size effect is the frequency of problems, not the order in which they are
presented.

Damage
The results from brain-damaged subjects (section 2.1.2) were simulated by damaging the
weights of the trained networks. There are many ways to damage a network. Examples
include: perturbing the weights, removing units, changing the activation function or
response mechanism. McCloskey & Lindermann chose to reduce the magnitudes of the
weights by a random percentage, with a mean of 40 per cent. These damaged networks
were then tested on each problem 30 times, using the 16 step annealing schedule.

As expected, the accuracy of the networks fell to a mean level of 79 per cent. Like
human subjects, the damage was non-uniform. That is, some problems were severely
damaged, whilst others were relatively unaffected. This is an interesting observation.
Although the representations are distributed over the hidden units, some units and
weights are clearly more important for some problems than others.

The error rates also followed the problem-size effect, showing a higher error rate for
large problems than small problems. However, it was reported that there were more
exceptions to the problem-size effect for the networks than for human subjects. The
actual errors made showed a similar pattern to the undamaged networks: most errors
were operand errors.

Unlike human subjects, the networks made no omission errors: the system always
reached a stable state, and the answer could always be determined. This is probably an
artifact of the response mechanism: it may be possible to change the response system so
that omission errors are produced. This could be implemented by rejecting outputs for
which the best match to a digit is below some threshold.

Human subjects show similar error rates for complimentary problems, such as 4�5
and 5�4. That is, the subject’s behaviour on 5�4 will be the same on 4�5. No such
correspondence was found for MATHNET. As McCloskey & Lindermann note, this may
be due to fundamental differences between MATHNET’s representations and humans’
representations: perhaps humans use an encoding that does not preserve order, like the
interactive activation model. Or perhaps the discrepancy is due to subjects using other
strategies—e.g., if the solution cannot be found, swap the order of the digits and try again.

Discussion
The MATHNET project is the most comprehensive of the accounts presented. It tackles
the issues of errors, including non-table errors, RTs, frequency issues, brain-damage
issues, and the details of the system are explicitly stated. A number of issues arise from
the study:

� The mechanism which selects a response based on the digit with the closest match to
the output vector could probably be implemented in terms of an additional “clean
up” network. As noted activity needs to be turned into action. At the moment, the
response selection is performed externally to the network, and no details are given as
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to how this is implemented in connectionist technology. McCloskey & Lindermann
state that for undamaged networks most of the answers are unambiguous, hence a
small amount of competition between the output units could be used as a response
mechanism.

� It appears that non-table errors are occurring more frequently for the networks than
for humans. The causes behind this need to be explored. For example, to what
degree do the connections between the output units contribute to this effect? Are
these connections needed at all?

� Given that the output layer was split into a tens field and a units field, it is surprising
that MATHNET did not exhibit the RT dip associated with 5s problems. One would
have expected the system to exploit the fact that all 5s problems end in zero or five.

� The system is run until all the answer nodes have saturated. Perhaps it would be
possible for the system to show different RTs for the units and tens fields. That is, it
may be the case that the system can produce the tens part of the answer before the
units part (e.g., “six sevens are…forty…umm…two”). Whether humans or network
exhibit this is an unexplored issue.

2.4 Summary

There is a pattern to the RTs and errors made by normal and brain-damaged adults
solving multiplication problems. RTs are slower for larger problems, although there are
exceptions to this rule, most notably the 5s and tie problems. Despite being a well-learned
set of facts, adults make occasional errors on multiplication problems. These errors tend
to be the correct answer for problems that share a digit with the presented problem. It
appears that problems involving zeros or ones may be solved by the application of a
general rule. This suggestion is supported by studies of brain-damaged subjects who
show uniform impairment and recovery on zero and one problems.

A number of models have been proposed to account for the above phenomena. In
general, the models lack explicit mechanisms or justifications for assumptions, such as
the links between output units, or Campbell & Graham’s magnitude units.

Network models appear to be best suited in this domain, and two such models were
presented to describe the approach (Siegler 1988; Campbell & Graham 1985). Other
models were omitted from the survey (notably Ashcraft 1987; Stazyk et al. 1982) because
they add no details or assumptions to the approach that were not present in the Campbell
& Graham or Siegler models.

Connectionist models improve on network models as they offer explicit learning and
activation rules. However, with the exception of MATHNET, the retrieval and error
processes have been poorly specified.

All the models differ in various ways: some require explicit training of false facts,
others do not; some propose or require problem units, others exclude them; product units
are used by some models, whereas tens and units outputs are used in others. Some of
these parameters are discussed in the next chapter.

Finally, there is a clear need for more empirical work, particularly in the development
of arithmetic skills, to judge the possible construction and use of problem units, tie flags,
and operand representations. Studies are also needed to gain an understanding of the
arithmetic environment, and in particular to estimate how often problems occur.
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CHAPTER 3

Cascade Model of Memory for
Multiplication Facts

This chapter describes a connectionist model of memory for multiplication facts built us-
ing McClelland’s “cascade” equations (McClelland 1979; McClelland & Rumelhart 1988).
It is referred to as the “cascade model” or “cascade network” (no relation to cascade
correlation, Fahlman & Lebiere 1990).

The model was originally designed with two objectives in mind. First, in contrast
to the BSB model, the network should be able to capture occasional errors. That is,
although the network should correctly learn all the multiplication facts, it should also
produce errors when under time pressure. The second objective was to minimize the
number of assumptions about connection and unit types. This objective was formulated
in the context of the Campbell & Graham (1985) model, where many different knowledge
sources were presented. The aim was to see how many of the assumptions could be
omitted.

The above aims were only selected after it was observed that the architecture could
potentially account for the phenomena. The network was first used as a “slave” network,
providing arithmetic facts for a multicolumn arithmetic network—the one described in
chapter 5, although the fact network was not used in the final multicolumn network.
The aim was to investigate what kinds of factual knowledge would be useful to the
multicolumn network, hence the same technology was used to build the fact network
(a multilayer perceptron trained with backpropagation). The results from the work of
Campbell & Graham (1985) suggested that the fact network could be tested for RT and
errors. When this was done, a primitive RT measure showed a dip for 5s problems,
prompting further investigation of the network.

Since then the architecture and representations have changed in many ways. For
example, the first experiments used a one-of-N input encoding and represented answers
in separate tens and units fields. It was found that in order to capture human performance,
various changes needed to be made. This chapter first outlines the “finished product”,
after all the changes have been made. The motivation for the changes, and the results
they gave, are presented in section 3.4.

Much of the literature has focussed on the problems 2�2 to 9�9. The first set of
experiments did not simulate ones or zeros problems as human empirical data had only
been found for 2�2 to 9�9 at that time. However, in light of the work of Harley (1991)
and Miller et al. (1984), simulations of zero and ones problems were performed. These
experiments are presented in section 3.3. Finally, the system is compared to the other
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First digit

Tie flag

2 3 4 5 6 7 8 9 2 3 4 6 7 8 95

Second digit

4 6 8 10 81726463

"Don’t know" unit Products

Hidden units

?

Figure 3.1. Architecture of the cascade model.

connectionist models, and issues arising from the model are discussed.

3.1 Architecture of the model

The structure of the network is shown in figure 3.1. The 17 inputs to the network are
split into two groups of 8 units to encode the presented digits, 2–9. An additional
unit is activated when a tie problem (e.g., 3�3, 4�4) is presented. The inputs are fully
connected to a set of 10 hidden units. Experimentation showed that 10 hidden units are
the smallest number of units which would reliably learn the problems in the training set.
That is, networks with less than 10 hidden units would not always be able to learn the
associations.

There is one output unit for each of the products (a one-of-N “type” encoding), plus
a “don’t know” unit (DKU). The tie unit and the DKU are discussed below. If a “token”
output encoding was used it would be possible to construct a model without hidden
units. This possibility has not been explored.

The two digits that comprise a problem are coarse encoded on the two sets of input
units. Activation falls off exponentially around the presented digit. Specifically, the input
to a unit, u, for a presented digit, d, is given by:

iud = e�0:5(ju�dj=0:85)2

where ju � dj is the absolute difference between u and d (i.e., the distance between the
two units). The constants were arbitrarily chosen so that the digit being encoded received
an input of 1.0, and the immediate neighbours were 0.5. Activation continued to decay
beyond the neighbours, and the input pattern is illustrated here for the digits 5, 6 and 7:

5: 0.00 0.06 0.50 1.00 0.50 0.06 0.00 0.00

6: 0.00 0.00 0.06 0.50 1.00 0.50 0.06 0.00

7: 0.00 0.00 0.00 0.06 0.50 1.00 0.50 0.06

This choice of representation is discussed in section 3.4.
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For adults, tie problems are faster than their position in the multiplication table would
suggest. Although Siegler (1988) found a frequency advantage for tie problems in school
textbooks, simulations suggest (section 3.3.1) that this is not enough to account for the tie
problems’ RT advantage. So for ties an additional input unit (tie flag) is set to 1.0. Without
this, the tie problems were consistently among the slowest problems for the networks.
Hence, the flag is an ad hoc inclusion which exists only to allow the network to produce
faster RTs for tie problems. Tie problems are difficult to account for without some change
to the input encoding such as the inclusion of a tie flag. The information that the two
presented digits are equal could be computed by the network: the problem is the inverse
of XOR. The inclusion of a tie flag is making the information explicit. The observation
here is that the tie flag speeds response on tie problems. The flag might be thought of as
reflecting the perceptual distinctiveness of tie problems, possibly as a result of children
learning notions like “same” and “different”.

3.1.1 Recall
Networks of the kind described here usually have no reaction time: the outputs are
computed in one step. A RT measure is implemented in this system by changing the
activation equations.

Once the input units have been set, the “cascade” activation equation (McClelland &
Rumelhart 1988, p. 153) is used to simulate the spread of activation in the network. The
net input to a unit, i, at time t, is adjusted to allow activation to build up:

neti(t) = k
X

j

wijaj(t) + biasi + (1� k) neti(t� 1);

where wij is the weight between unit i and j. The cascade rate, k, determines the rate
with which activation builds up. It is set to 0.05 in these simulations. The activity of a
unit is computed with the usual logistic squashing function:

ai(t) =
1

1 + e�neti(t)

The cascade equations can be thought of as being implemented by a unit with self-
feedback. Figure 3.2 shows how activation builds up with the cascade equations. The
net input to a unit determines how fast activation builds up. In figure 3.2 the system is
simplified and represents a single unit connected to an input which has a fixed activation
of 1. Variations in the weight produces different activation curves. The figure shows the
number of iterations required to reach a fixed threshold of 0.7. With a large weight of
1.5, 16 iterations are required. With a smaller weight of 1.0, 37 cycles are needed. The
activation of the negative weight decays away. This example used k = 0:05: a smaller
value of k would result in more processing steps before the threshold is reached; a larger
value of k would make it more difficult to discern events that happen in quick succession.

The RT measure is taken to be the number of steps required to reach a threshold. With
a low enough threshold, certain incorrect answers will reach the threshold. This is not
obvious from figure 3.2, but is demonstrated below. Errors tend to be most active early
in processing, although the activation values are often small—typically less than 0.1. To
allow these errors to be accepted, the threshold would have to drop from a relatively large
value, say 0.7, to a small value such as 0.1. Rather than do this, the output values are
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Figure 3.2. Demonstration of the cascade equations.

normalized. That is, the response of an output unit is the normalized activation value:

oi =
aiP
j
aj

Here i and j refer to all the output units. There are a number of ways this normalization
could be implemented in connectionist terms, but at the moment it is done externally.
Throughout the chapter, and in the figures, this normalized value is used unless otherwise
stated. To summarize: first the net input is computed; this is fed into the logistic function
to give the activation; the activation is normalized to give an output signal. Processing
continues until the output of a product output unit exceeds a specified threshold.

To avoid any initial bias towards particular outputs, the activity of the network is
started from a neutral state. Following McClelland & Rumelhart (1988), the initial state
of the network is the state that results from processing an all-zeros input pattern. Note
that it is not usually enough to start the system by setting the hidden vector to all zeros:
output units may be selective to the non-activity of certain hidden units.

Originally, the network was trained to turn off all output units when all the input
units are off. However, it was found this did not quite happen: certain products were
slightly active. These products had an advantage over the others, and were always more
active early in processing—just the situation that was to be avoided. This artifact was
removed by adding a “don’t know” unit to the output layer. The network was trained
to activate only the DKU for an all-zeros input. After training, the DKU had a positive
bias, and all the product units had a negative bias. The DKU appears to solve the bias
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problem, as simulations show that individual products do not have any advantage over
other products. Thus, the DKU is a computational consideration, and it is not clear what
role it might play in the equivalent human system. The DKU is not to be confused with
subjects responding “don’t know” to problems, or omission errors in general.

3.1.2 Training
Two sets of experiments were run. In the first, the system was trained on all the problems
2�2 to 9�9. The second experiment expanded the architecture to cover 0�0 to 9�9. The
experiments are described separately below. In all cases the problems were trained in a
random order using backpropagation (learning rate 0.01, momentum 0.9).

During training, the presentation frequency of each pattern is skewed in favour of the
smaller problems. The skew was produced by storing the relative frequency (between
zero and one) of a problem alongside the problem in the training set. When a problem
was presented to the network, the weight error derivative was multiplied by the relative
frequency value for that pattern. This can be thought of as providing each input pattern
with a different learning rate. This method allowed accurate control over the presentation
frequencies, without duplicating entries in the training set.

A different skew was used in both of the experiments, but the all-zeros pattern was
always trained with a maximum relative frequency of 1.0.

Although small problems do occur more frequently in textbooks, there is no reason to
believe this skew continues into adulthood (McCloskey, Harley & Sokol 1991, p. 328). To
see if the effects of the skew would continue once the skew was removed, trained networks
were further trained on problems with equal frequencies. That is, in both experiments,
two kinds of networks were produced: the “skewed” networks, which were just trained
on the skewed training set; and the “equalized” networks, which resulted from further
training the skewed networks on a training set in which all problems occurred with equal
frequency.

In both experiments, 20 different networks (different initial random weights) were
trained in this way. All results presented below are mean results taken across the 20
networks.

McClelland & Rumelhart (1988) note that the asymptotic activation of units under the
cascade equation is the same as that reached after a standard feed-forward pass. Hence,
the network is trained without the cascade equation (with k = 1), and then the equation
is switched on to monitor the network’s behaviour during recall.

A final detail of the training is that the derivative of the activation function was
changed slightly. Following Fahlman (1988), a small constant of 0.1 (the “sigmoid-prime
offset”) was added to the derivative. Backpropagation takes the derivative of a unit’s
activation into consideration when computing the weights changes. The derivative of
the logistic activation function is:

f 0(ai) = ai(1� ai)

which peaks when the activation of a unit, ai, is 0.5, and tends towards zero when ai tends
towards 1 or 0. Intuitively this makes sense: the largest changes should be made to those
units that are “undecided”, with activations around 0.5. However, for some problems the
activations may saturate prematurely. A small derivative slows learning, and Fahlman
found that a network could fail to learn a training set because units had saturated early
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Output units Probability that unit is…
0 1

81, 64, 49, 25, 9, 4, DKU 0.985 0.015
72, 63, 56, 54, 48, 45, 42, 40, 35, 32,
30, 28, 27, 21, 20, 15, 14, 10, 8, 6

0.969 0.031

36, 16 0.954 0.046
24, 18, 12 0.938 0.062

Table 3.1. Unconditional probabilities in the 2�2 to 9�9 training set.

on. Adding a constant to the derivative means that the derivative, and hence the weight
changes, do not get too small when error remains to be corrected. Sigmoid-prime offset
was found to be essential in training networks on the multiplication tables, presumably
because of the skew in presentation frequency.

3.1.3 Training set conditional probabilities
The training set consists of 65 input/output pairs: the 64 multiplication facts (2�2 to
9�9) plus the all-zeros input pattern which activates the DKU. For this training set it is
possible to compute the conditional probabilities of any output unit having a particular
value given certain constraints on the values of the inputs. The networks are likely to
exploit certain “obvious” correlations in the training set, and the computation of the
conditional probabilities in the training set will allow us to discover these correlations.

The simplest case is to consider the probability of an output unit being on (or off)
regardless of which input units are active. The probability of an output unit having a par-
ticular value is the number of times the output unit has the value divided by the number
of patterns in the training set. Table 3.1 shows these “unconditional” probabilities.

The first row of the table shows the output units most likely to be off. These units
include the DKU and the answers to tie problems, with the exception of the frequent
products 16 and 36. The next row in the table contains the majority of the output units
and shows no obvious pattern. The last two rows cover the output units that are most
likely to be active, and unsurprisingly those units represent the most frequently occurring
products: 12, 16, 18, 24 and 36.

The unconditional probabilities suggest that the ties problems are going to be the
hardest problems for the network to master. As mentioned above, without a tie unit in
the input representation it was found that the tie problems had long RTs—something that
would be expected if the tie problems had not been learned as well as other problems.

Certainties are found by looking at the first order regularities in the training set. These
are the probabilities that an output unit will have a particular value given that an input
unit also has a particular value. Specifically, the probability that output unit y has a value
v given that input unit x has a value w is: number of patterns in which y = v when x = w
divided by the total number of patterns in which x = w.

Note that we do not have to look at the second order probabilities (those involving
constraints on two input units) because this would encapsulate the training set. That is,
constraints on two input units precisely determine the value of all the output units (e.g.,
if the 3 input unit is active and the 5 input unit is active, then the 15 output unit will be
active with probability 1; all other output units will be off, probability 1).
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Constraint Output units Probability that unit is…
Digit Value 0 1
9 0.0 81, 72, 64, 63, 56, 54, 49, 48, 45, 42,

40, 35, 30, 25
1.0 0.0

9 0.5 81, 63, 54, 49, 45, 42, 36, 35, 30, 28,
27, 25, 21, 20, 18, 15, 14, 12, 10, 9, 8,
6, 4, DKU

1.0 0.0

5 0.000016 81, 72, 63, 54, 45, 36, 27, 18 0.972 0.125
5 0.001973 16 0.875 0.125
5 0.0628 21 0.875 0.125
5 0.5 36, 24, 12 0.875 0.125
5 1.0 45, 40, 35, 25, 20, 15, 10 0.875 0.125
5 0.001973 72, 64, 56, 48, 40, 32, 24, 18, 14, 12,

10, 8, 6, 4
0.9375 0.0625

5 0.0628 63, 56, 49, 42, 35, 28, 27, 24, 18, 15,
14, 12, 9, 6

0.9375 0.0625

5 0.5 54, 48, 42, 32, 30, 28, 20, 18, 16, 8 0.9375 0.0625

Table 3.2. Conditional input/output probabilities for the 2�2 to 9�9 training
set. Note that the probabilities are the same regardless of which of the two
operands is considered.

Each output unit can be either on or off. The same is true of the tie input unit, but
the other input units can take on any of 6 values: 0.0, 0.000016, 0.001973, 0.06278, 0.5 or
1. This gives over 6000 first-order conditional probabilities to consider. Table 3.2 shows
some of the main conditional probabilities.

The first two rows of the table show a typical group of conditional probabilities which
have a probability of 1.0. There are over 2000 of these certainties, and they all concern
output units being off. Hence we would expect the networks to develop large negative
biases on all the output units.

The third line of the table shows an example of the highest probabilities for which an
output unit is active. This particular row shows that when the 5 input unit is activated
with a value of 0.000016, the 9 times table will be activated with a probability of 0.125.
Note that the only time when the 5 input has this value is when the 9 input unit has a
value of 1.0. The next four lines of the table follow the other constraints on the 5 input
unit that result in an active output unit.

The remaining lines continue the look at the 5 input unit, and the lower probabilities
associated with it. There are no interesting patterns in this analysis, and we can rule-
out the possibility that close operand errors (for example) are simple reflections of the
conditional input/output probabilities.

However, the conditional probabilities do show themselves in the analysis of the
networks’ hidden units. Turning forward to page 43, figure 3.5 shows the response of
hidden units to all the problems 2�2 to 9�9. Note that unit 17 shows a strong response
to 5s and 9s problems. The match to the conditional probabilities table is striking, though
not perfect. When the conditional probabilities analysis is carried out for the 2 input unit,
we find the probabilities covering all products except the largest products in the 7, 8 and
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9 times tables. This pattern is not dissimilar to that seen in the receptive field for unit 23.
Again it is not the case that the hidden unit receptive fields directly reflect the condi-

tional probabilities in the training set. For example, unit 22 is selective to the 2 and 3 times
table, yet this pattern is not found in the conditional probabilities analysis. Nevertheless,
it is clear that the probabilities do have a marked effect on development of the receptive
fields.

3.2 Simulations for 2�2 to 9�9

The following experiment was performed to see how well the model could account for:
the RT problem-size effect; exceptions to RT pattern; and the distribution of operand,
close-operand, and table errors.

3.2.1 Training
The 64 problems, 2�2 to 9�9, were each assigned a frequency according to the following
arbitrary function:

frequency =
90� product

88

This produces a linear skew, based on product, in favour of the smaller problems. For
example, 2�2 was assigned frequency of 0.96, whereas the frequency was approximately
0.1 for 9�9. The parameters of this skew were the only ones tested, and the frequencies
are similar to the ones used by McCloskey & Lindermann (1992). It would also be possible
to explore the effect of basing the skew on a function other than the product of the two
operands. Examples might include the minimum operand, maximum operand, or sum
of operands. These variations have not been explored here.

Training on the skewed problems continued to an error criterion (total sum squared,
TSS) of 0.05, taking approximately 8 000 epochs. After this, the networks were trained for
a further 20 000 epochs with equal frequencies reaching a mean TSS of 0.005. At the end
of each of the training phases, both the “skewed” networks and “equalized” networks
correctly solve all problems.

3.2.2 Recall
On each trial (presentation of a problem) a response threshold was selected at random
from a uniform distribution in the range 0.4 and 0.9. Processing then starts from the
all-zeros (“don’t know”) state, and proceeds until a product unit exceeds the threshold.
The RT is recorded for a correct response, and erroneous responses are classified into the
categories listed in chapter 2 (e.g., close-operand error, etc).

As the threshold in the recall process is a random element, each problem must be
presented a number of times to capture the mean behaviour of the networks. Each
network is presented with each of the 64 problems 50 times.

Given enough time (usually 50 cascade steps), the networks will produce the correct
response for all 64 problems. With a high threshold, the network is allowed this time,
and the correct answer is produced. However, early in processing erroneous products
are active, and with a low threshold these errors are reported. Presumably the mild time
pressure of the experimental situation results in subjects “lowering their thresholds”.

For example, figure 3.3 shows the response of a network to the problem 3�8. After
the DKU has decayed, the unit representing 27 becomes active until the network settles
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Figure 3.3. Response of the output units over 40 time steps for the problem
3�8. Output units representing products over 32 are not shown on this
graph. The size of each of the squares is proportional to the output of a
particular product unit at a particular moment in processing.

into the correct state representing 24. This is a demonstration of the operand distance
effect, but there is slight activation of other products: 3�7=21, 2�8=16, 4�8=32, 3�3=9,
and 2�7=14.

Note that the model predicts that false answers are always recalled more quickly than
correct answers. This is because the false error always becomes active before the correct
one. Therefore, if it is to be retrieved, the RT for the incorrect answer will be less than
the RT for the correct answer. Campbell & Graham (1985) only recorded RTs for correct
answers, hence it is not clear that this situation is always the case. However, it should
be easy to collect evidence to refute or support the model’s prediction. A finding that
erroneous RTs are larger than correct RTs is strictly incompatible with the model as it
stands. Of course other response mechanisms could be invented.

3.2.3 Results
The mean RTs of the networks are plotted in figure 3.4. The RTs show some of the basic
features of the problem-size effect, including a dip for 5s problems.

For the skewed networks the RT correlates r = 0:36 (p = 0:0018) with adult RT
(Campbell & Graham 1985). This falls to r = 0:19 (p = 0:063) after substantial training
on the equalized patterns. Note that the RTs have reduced and flattened out for the
equalized network, which is just what is expected after continued practice (Campbell &
Graham 1985, p. 349). The obvious feature of the RT plot is the drop in RT for the nine
times table. Children in grades 3 to 5 respond faster to 9s problems than 8s problems
(Campbell & Graham 1985), but this levels out for adults. The 6s problems are also faster
than expected when compared to human RT. Overall, the skewed network exhibit the
best problem-size effect, with only a slight effect observed on the equalized networks.
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Figure 3.4. Mean correct RT per multiplication table collapsed over operand
order for mean RT of 20 skewed and 20 equalized networks.

The inclusion of a ties unit is necessary to ensure that ties are among the fastest
problems. For the skew networks, the RTs of 6 out of the 8 tie problems were below the
mean RT for their table, increasing to 7 ties for the equalized networks. 6�6 remained
above the mean for the six times table.

Table 3.3 shows the error distribution for the 20 networks. This is similar to the
distribution for adults (table 2.1 on page 8), although without such a diversity of errors.

Table 3.4 summarizes the error distribution, and compares them to Campbell & Gra-
ham’s results. Both sets of networks have error distributions that are similar to that of
adults, but with a larger error rate. There is little difference between the skewed and
equalized networks.

A further point of interest is the correlation between problem error rate and correct
RT. Campbell (1987, p. 110) reports a correlation of 0.93 for adults. For the skewed and
equalized networks r = 0:74 and r = 0:76 respectively. It is not obvious that any model
would necessarily predict that slower problems produce more errors.

The model cannot produce non-table errors as all the output units correspond to
products. Campbell & Graham (1985) report that only 7.4 per cent of errors are of this
kind, so it may not be unreasonable, at first, to focus on the other errors which make up
the majority of the phenomena. However, non-table errors must be accounted for, and
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4 6 8 9 10 12 14 15 16 18 20 21 24 25 27 28 30 32 35 36 40 42 45 48 49 54 56 63 64 72 81
2�2 c 25 2 17
2�3 4 c 17 31
3�2 2 c 16 31
2�4 25 c 25 3
4�2 25 c 25 6
2�5 c
5�2 c
2�6 7 c 25
6�2 14 c 25
2�7 c 3
7�2 c 5
2�8 18 7 c 9
8�2 21 11 c 17
2�9 16 c 7 2
9�2 14 c 13 1
3�3 38 17 c 13 19 24
3�4 87 c
4�3 1 93 c
3�5 29 142 11 c 27
5�3 35 134 7 c 20
3�6 51 2 9 c
6�3 49 1 5 c
3�7 5 77 45 40 c 25 9
7�3 11 77 45 35 c 25 3
3�8 75 24 c 64 14
8�3 79 24 c 62 14
3�9 5 76 c
9�3 4 76 c
4�4 35 10 c 34
4�5 5 11 c 44
5�4 2 7 c 40
4�6 1 18 22 c 147 8 5
6�4 1 17 21 c 144 15 3
4�7 10 16 53 c 37 25 20 2 35
7�4 11 16 54 c 39 25 18 2 23
4�8 16 43 c 18 75 8 25
8�4 16 44 c 14 78 8 25
4�9 25 25 c 95 17 47
9�4 25 25 c 98 18 49
5�5 3 c 1 24
5�6 c 1 22
6�5 c 2 22
5�7 10 50 c 64 41 25
7�5 11 50 c 54 38 25
5�8 4 c 44 20
8�5 3 c 47 20
5�9 1 7 c 9
9�5 5 10 c 5
6�6 3 c 24 41
6�7 14 13 c 32 4
7�6 17 14 c 30 8
6�8 15 7 c 22 35
8�6 12 8 c 25 36
6�9 25 c
9�6 25 c
7�7 3 15 c 44
7�8 1 66 5 c 120 25
8�7 63 4 c 117 25
7�9 15 21 c 46
9�7 16 23 c 35
8�8 6 6 22 6 c 39 61
8�9 4 25 50 4 c
9�8 4 25 50 4 c
9�9 2 26 c

Table 3.3. Errors made by 20 “equalized” networks trained on the problems
2�2 to 9�9. “c” means correct answer, and on average represents 407 correct
recalls from 500 trials.

this topic is taken up in section 3.5.

3.2.4 Comments
The following questions are addressed by analysing the trained networks:

1. Why are certain problems answered more quickly than others?

2. Why are operand errors the most frequent kinds of errors?
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Networks Adults
Skewed Equalized

Operand errors 90.04 86.51 79.1
Close operand errors 78.98 73.75 76.8�

Frequent product errors 25.0 20.49 24.2
Table errors 9.74 13.49 13.5
Operation error 3.98 3.22 1.7�

Error frequency 14.1 18.64 7.65

� Approximate percentage.

Table 3.4. Percentage breakdown of errors. Figures are mean values from
twenty different networks, and mean values from sixty adult subjects (Camp-
bell & Graham 1985, appendix. A). Note that the model has not been trained
on addition facts, so the frequency of operation errors is coincidental.

3. How are these behaviours established?

RT depends on the net input to a unit, and this can be increased by having some
large, or many small, weights. The interesting question is why these weights develop.
Presentation frequency, product frequency, initial weight values, and input encoding are
all involved in determining the weights.

The presentation frequency of a problem and product should have a strong effect
on the weights: those problems seen more often should develop larger weights. Sim-
ulations with networks trained on patterns with equal presentation frequencies alone
(section 3.4.2) have demonstrated that the frequency of presentation is important.

However, frequency does not explain why the five times table should be faster than
the four times table. “Product uniqueness” may explain why: none of the products in
the five times table occur outside the context of five (unlike the two times table, where
the products 12, 16 and 18 occur in other tables). Hence, the error signals for the 5s
products are not diluted through differing hidden representation for different problems.
This explanation is not satisfactory because the same argument should apply to the seven
times table as 7s products are also “unique”. The 7s problems have a lower presentation
frequency which may explain the discrepancy. Also, other simulations which change
the product distribution (e.g., by introducing 10s problems) offer some support for the
explanation. These simulations are described in section 3.4.

With respect to the speed of the 9 times table it is worthwhile recalling the conditional
probabilities in the training set (see section 3.1.3, page 36). It was noted that the strongest
conditional probabilities between the 5 input unit and active products shows similarities
to the pattern seen in the hidden unit activations of unit 17 (figure 3.5). Perhaps the
9s are fast by gaining a “free ride” on the speed of the 5s by virtue of the conditional
probabilities in the training set. That is, the speed of the 9s may be just an artifact of the
encoding scheme used—one which happens to encourage the joint encoding of 5s and
9s. It follows that other features of the model may be dependent on peculiarities of the
input representation and the conditional probabilities in the training set. Variations in
the input encoding are considered in section 3.4, and it is noted that simulations using
different input encodings do not show such a marked dip for the 9s.
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Figure 3.5. Hidden unit activations for one network. Each large rectangle
represents one hidden unit. Within each rectangle, the size of the smaller
rectangles represents the activation of the hidden unit to a particular prob-
lem. Each large square mimics the multiplication table (top-left for 2�2, and
bottom-right for 9�9).

In this model the hidden unit encodings are learned (unlike the problem units in the
interactive activation model, or magnitude units in Campbell & Graham’s model). The
“receptive fields” of the hidden units for one network are plotted in figure 3.5. Although
there are no dedicated problem units, certain units do respond to sets of problems (e.g.,
unit 22 for 3s and 4s problems). One unit, 21 in this example, responds to tie problems.
Other units are rather like Campbell & Graham’s general magnitude units: unit 26
responds to small products; unit 23 to medium products; and unit 24 responds to larger
products. The weights between the input layer and the hidden layer are approximately
the same for the two operands. This is reflected in the symmetry of the receptive fields.

The hidden units tend to respond to bands of inputs. This seems to be due to the
coarse coding scheme used for the inputs. Section 3.4.1 explores this point by looking at
the receptive fields that result from a one-of-N input encoding. The broad response of
the hidden units could be one of the causes behind the operand distance effect. Hidden
units’ activities change smoothly during the course of processing, but at differing rates.
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Figure 3.6. Problem frequencies (from Siegler 1988). The x and z axes
represent the multiplication table (rightmost corner is 0�0, leftmost is 9�9).
The y axis shows the frequency of each problem.

This affects groups of related products due to the overlap in the hidden encoding (e.g.,
between unit 23 and 24). The result is that some combinations of hidden unit activity
may force incorrect products to exceed threshold.

Other causes for the problem-size effect and operand errors are discussed in section 3.4.

3.3 Simulations for 0�0 to 9�9

These simulations were performed for two reasons: first, to see how zero and ones
problems interact with the results from the previous experiments; and, second, to use
more realistic problem frequencies.

3.3.1 Training
In this experiment the presentation frequencies were skewed according to the problem
frequencies reported by Siegler (1988, table 4). The frequencies are shown in figure 3.6,
and are derived from the number of occurrences of each problem in second- and third-
grade textbooks. These frequency values are, presumably, more “realistic” than the
previous skew function that was assumed. Note, though, that there is a general decrease
in frequency from small to large problems. Note also the difference in frequency for zero
and ones problems compared to the other problems. The contrast to other facts suggests
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Figure 3.7. Mean correct RT per multiplication table collapsed over operand
order for mean RT of 20 skewed and 20 equalized networks.

that zeros and ones problems are treated as different kinds of problem when taught.
To accommodate the extra digits on the input layer, four extra input units were

added—two for each operand to encode zero and one. The output layer was increased
to cover the extra products that can be produced from zero and one multipliers. As the
training set was increased from 65 to 101 problems (including the all-zeros pattern), it
was found that an extra 2 extra hidden units were required. The network contained 21
inputs, 12 hidden units and 38 output units.

As before, skewed and equalized networks were produced. The skewed networks
were trained for 35 000 epochs to a mean TSS of 0.07. A further 35 000 epochs with equal
frequencies were used to produce the equalized networks, reaching a mean TSS of 0.002.
Again, after training both sets of networks could correctly recall all the problems.

There was no change to the recall process.

3.3.2 Results
For 2�2 to 9�9, the results from this experiment are similar to the previous one. The
mean RTs plotted in figure 3.7 show some of the basic features of the problem-size effect,
but these do not appear to be as good as the RT curves from the previous experiment.
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Networks Adults
Skewed Equalized

Operand errors 93.56 93.15 86.2
Close operand errors 78.14 74.12 76.74
Frequent product errors 21.11 18.76 23.26
Table errors 6.43 6.85 13.8
Operation error 2.21 1.81 13.72
Error frequency 10.64 15.58 6.3

Table 3.5. Percentage breakdown of errors. Figures are mean values from
20 different networks, and mean values from 42 adult subjects (Harley 1991,
appendix B). Adult scores other than error frequency were recomputed from
Harley’s data.

However, for the skewed networks the RT correlates r = 0:22 (p = 0:013) with adult RT
reported by Miller et al. (1984). This increases to r = 0:37 (p = 0:000067) for the equalized
networks. Slightly lower correlations were found with the Harley (1991) RTs.

These correlations are biased by the low RTs of the zeros problems. When just the
problems 1�1 to 9�9 are considered, the correlations drop. For the skewed networks
r = �0:033 (p = 0:38) for the Harley (1991) RTs, increasing to r = 0:12 (p = 0:12) for the
equalized networks. Compared to the RTs reported by (Miller et al. 1984) the correlations
are r = 0:018 (p = 0:43) for the skewed networks, and r = 0:19 (p = 0:036) for the
equialized networks.

Although the zero problems are solved very quickly, overall the system does not not
appear to capture RT for 0�0 to 9�9. One of the more surprising results is that the ones
problems are among the slowest problems.

As was observed in the other simulations, the RTs have reduced and flattened out
for the equalized networks. Also the 5s and 9s dips are present, although the dips are
comparable to the 3s dip. The dip seen for 6s in the previous experiment is not as
prominent here. All the tie problems were below the mean for their table, except for 6�6.
The correlation between RT and error rate was r = 0:74 for the skewed networks and
r = 0:76 for the equalized networks.

A comparison of error types is presented in table 3.5. The high frequency of operand
errors in the “adult” column is due to a large number of errors of the form 0�N=N.
The network made no errors of this form—in fact the networks made no errors at all
on the zeros problems. However, the networks made a number of unrealistic errors by
producing zero as an answer to many problems. This is shown in table 3.6: the first
column shows zero as an answer for problems such as 4�6, 5�7 and 7�9.

3.3.3 Comments
This experiment has shown that the speed of the zeros problems can be accounted for
within an associative network. Hence, contrary to various authors (Campbell & Gra-
ham 1985; Miller et al. 1984; Stazyk et al. 1982), it is not the RT of zero problems that
suggest zeros are solved by a rule-based mechanism: it is the error pattern. Human
subjects make errors of the form 0�N=N. For the network, the zero problems were
very well-learned, resulting in no errors on zero problems at all. However, zero was
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0 1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21 24 25 27 28 30 32 35 36 40 42 45 48 49 54 56 63 64 72 81
1�1 67 c 25 8 25
1�2 24 c 16
2�1 20 c 18
1�3 192 c 50 14
3�1 193 c 50 15
1�4 165 7 c 7 5
4�1 163 6 c 1
1�5 58 c
5�1 64 c
1�6 105 c 14
6�1 103 c 11
1�7 41 20 25 c
7�1 47 21 25 c
1�8 143 8 c 18
8�1 142 4 c 19
1�9 96 c 24
9�1 94 c 19
2�2 33 c 22 19
2�3 31 c 20
3�2 38 c 17
2�4 1 36 39 c 25 43 1
4�2 39 40 c 25 49 8
2�5 15 c 3 23 49
5�2 2 15 c 3 23 50
2�6 105 c 8 25
6�2 115 c 8 25 2
2�7 12 44 48 c 3
7�2 4 49 49 c 4
2�8 5 41 25 25 c 24 4
8�2 8 44 25 25 c 25 1 8
2�9 10 c 34
9�2 2 3 c 41
3�3 25 3 c 50 23
3�4 18 c 25 32 24
4�3 18 c 22 38 20
3�5 6 23 75 c 25 25
5�3 4 23 77 c 25 25
3�6 29 85 c 25 5
6�3 27 75 c 25 5 3
3�7 17 60 20 c 16 47 2 7
7�3 15 61 15 c 18 47 2 12
3�8 c 76 10 16
8�3 c 72 5 13
3�9 3 14 6 c 5
9�3 2 15 8 c 5
4�4 11 29 25 7 c 38 35
4�5 11 25 c 24 19
5�4 2 25 c 25 26
4�6 11 10 25 c 9 4
6�4 7 16 25 c 34 8
4�7 29 29 25 c 10 25
7�4 30 30 25 c 14 25
4�8 34 2 c 21 25
8�4 33 5 c 17 25 2
4�9 40 c 25 3
9�4 44 c 25 2
5�5 7 c 2 38
5�6 c 9
6�5 c 14
5�7 25 25 c 25
7�5 25 25 c 25
5�8 c 80
8�5 c 68
5�9 c 25
9�5 c 23
6�6 23 19 5 c 17 9 52
6�7 c 23 18
7�6 c 21 16
6�8 c 87
8�6 8 c 88
6�9 1 c
9�6 1 c
7�7 46 25 24 25 c 5 15 7
7�8 25 27 10 c 90
8�7 25 34 14 c 89
7�9 14 10 9 16 c
9�7 13 14 10 13 c
8�8 9 23 9 10 c 50 31
8�9 23 c
9�8 24 c
9�9 9 7 19 c

Table 3.6. Errors of 20 “skewed” networks. No errors were made on zero
problems, and these have been omitted from the table. “c” means correct
answer, and on average represents 423 correct recalls from 500 trials.

unreasonably promoted as an error for some problems (e.g., 5�5=0).
It is conceivable that an interaction with addition would change the system’s be-

haviour on zero problems. The introduction of problems such as 0+1=1, 0+2=2, and so
on, might have two effects. First, there would no longer be a simple mapping of “anything
involving a zero is zero”, reducing the prominence of zero as an unlikely error for some
problems. Second, the addition problems involving a zero may increase the likelihood of
a 0�N=N error. On the other hand, the inclusion of addition problems may increase the
RT for zero multiplication problems. This speculation should be backed by simulations
and requires more thought (e.g., how to incorporate the two operations).
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Figure 3.8. RT derived from the problem frequency shown in figure 3.6. The
RT is the reciprocal of the mean frequency of problems in each table.

The slow RT of the ones problems may be due to the low frequency of the problems
in the training set. This seems likely given that the RT for these problems decreases
markedly after further training, as shown for the equalized networks. However, the ones
RT should be comparable to the zeros problems (cf. figure 2.3 on page 12). There are
numerous ad hoc ways in which the network could be made to produce faster RTs for
ones problems. For example, the input representation could be biased towards zero and
ones problems, perhaps by using a logarithmic input encoding, or just allocating more
input bits to smaller operands. Again, more work is needed here.

The change from using a linearly skewed training set to one based on Siegler’s analysis
produced a dip in the RT for 3s problems. This dip can be explained by examining the
presentation frequencies: there is a frequency peak for 3s problems in the training set.
Assuming that RT is dependent on problem frequency (which is, of course, only part of
the story), it is possible to plot the RT derived from the problem frequencies. Figure 3.8 is
a plot of the reciprocal of mean problem frequency per table: the idea being that the more
frequent problems require less time to respond. The graph clearly shows the 3s dip. All
this suggests that the networks are heavily affected by changes in problem frequencies.

The presentation frequency also peaks slightly for the five times table. This may be
the reason behind the speed of the fives, but earlier simulations using a linearly skewed
frequency curve also produced the characteristic 5s dip.

Similar hidden units developed in the two experiments. Figure 3.9 displays the net
input to each hidden unit for a network (unlike the previous hidden unit graph, which
showed activation). Unit 27 responds to problems involving a zero, but otherwise the
responses are similar to those for the previous experiment.
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Figure 3.9. Net input to a network’s hidden units. Each large rectangle
represents one hidden unit. Within each rectangle, the size of the smaller
rectangles represents the net input to the unit for a particular problem.
Negative net input is shown by filled squares, and the size of the square
indicates the magnitude of the net input.

3.4 Further experiments

The simulations presented above show that the response mechanism produces errors
that are comparable to human errors. RTs also tend to be faster for smaller than larger
problems, but exceptions to this rule are exhibited. Some of the causes of this behaviour
are discussed below in the context of variations in the experiments.

3.4.1 One-of-N input encoding
One of the original set of simulations run for the problems 2�2 to 9�9 used a one-of-N
input encoding. That is, just one input unit was activated for each operand, rather than
using the coarse encoding. Other than the change to input encoding, the rest of the
simulation was the same as the 2�2 to 9�9 experiments reported above.

Figure 3.10 shows the mean RT from simulations with 10 different skewed networks
and 10 equalized networks. The RT curves from this experiment were exceptionally good,
correlating r = 0:6 with the adult RTs reported by Campbell & Graham (1985). Note the
7s dip that is expected from the “uniqueness” argument presented in section 3.2.4.
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Figure 3.10. RTs from simulations of 10 networks trained with a one-of-N
input encoding.

The errors were predominantly operand errors (around 97 per cent). However, only
58 per cent were close-operand errors, compared to 76 per cent for adults, and only 2 per
cent were table errors, compared to 13 per cent for adults. These observed discrepancies
lead to changing the input representation to the coarse encoding described in previous
experiments.

Note here that the networks trained with the one-of-N encoding do not need to be
trained on false associations to be able to produce errors. This is in contrast to the majority
of the models described in chapter 2: those models reply on false associations as a source
of errors. When the input encoding was changed to a coarse encoding the proportion of
close operand and table errors increases.

Previously I have commented (Dallaway 1992a) that the cascade model, when using
the coarse encoding, does not need to be trained on false associations to model the
phenomena. Yet, the coarse coding of operands implicitly introduces false associations.
For example, training on 5�8=40 does not just associate the 5 and 8 input units with the 40
output unit. Rather, half associations are also formed between 4�8=40, 6�8=40, 5�7=40
and 5�9=40. This is because the 4 and 6, and the 7 and 9 units are half-activated while the
other operand is fully activated. This is, of course, just the pattern needed to account for
close-operand errors (not operand-errors for 5�8, but for the other four problems). Using
the coarse representation, even smaller associations will be formed for 4�7=40, 4�9=40,
6�7=40 and 6�9=40. In this case both operands are only half-activated, giving a much
smaller association. This second pattern captures table errors. It seems, then, that the
change in input encoding introduces false associations which are suitable for increasing
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the percentage of close-operand and table errors in the cascade model.
The input encoding that McCloskey & Lindermann (1992) used for MATHNET (a

bar of 3 units) should make all these false associations with equal strength. Hence it
is surprising that only 5 per cent of MATHNET’s errors were table-errors, and more
errors were non-table errors. The output encoding for MATHNET consists of tens and
units fields, rather than products. The interaction between different input and output
encodings may complicate matters (e.g., input patterns are not attempting to activate
particular products, but are instead activating particular tens and particular units.)

Although the input encoding used by the cascade model (and MATHNET and BSB)
can be conceptualized as a coarseness in the encoding of operands, it can also be seen
as introducing false associations. The improvements to the model brought about by
introducing a coarse coding could also be effected by explicitly training on an appropriate
set of false products. As such the model blurs any theoretical difference between the
learning of false associations or the coarseness of operand encoding. That is, the current
model does not offer a way to choose between the two options, or of deciding how much
each contributes to the phenomena. Hence in some ways it does not make sense to ask
whether errors are caused by a coarseness in operand encoding or by false associations:
both produce false associations. Deciding if children actually learn false associations
from their environment requires further empirical studies. Likewise, deciding if children
learn false associations as a result of having a particular kind of operand representation
also requires further empirical studies.

The receptive field plots that result from a one-of-N input encoding show some
interesting differences to the plots for coarse coding (figure 3.11). The encodings are
“tighter”—they do not show the same degree of broad response that the coarse encoding
produces. Note also that the hidden units are responding more selectively for certain
tables. For example: unit 17 is responding to 6s; unit 18 to 3s; unit 21 to 9s; unit 23 to 7s.

These results indicate that the degree of coarseness (or sharpness) of the encoding is
something that needs to be explored. The sharpness of the encoding appears to play a role
in RT (good for sharp, one-of-N encoding), errors (better with some degree of coarseness)
and hidden unit representations.

3.4.2 Training without a frequency skew
To assess the importance of the skew in problem frequency, 10 networks were trained
with no frequency skew. The resulting mean RTs are shown in figure 3.12. Without a
frequency skew the RT curve lacks the problem-size effect. As expected, then, the skew
offers an advantage to smaller problems. The figure can be thought of as representing the
inherent difficulty of the input-output mappings in the training set: 3s, 5s and 9s appear
to have a natural advantage over other problems.

The coarse input encoding was used, and the errors made by the networks were
mostly operand errors. Of all trials, 26 per cent resulted in an error: 87 per cent were
operand errors (81 per cent close operand); 25 per cent were high-frequency errors; 13
per cent were table errors.

3.4.3 McCloskey & Lindermann’s input encoding
There is a problem with the coarse input encoding used in the experiments of sections 3.2
and 3.3: the encoding is biased against the smallest and largest operands, favouring the
central operands. The reason is that the input encoding decays around the operand being
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Figure 3.11. Net input to a network’s hidden units with one-of-N input
encoding. Each large rectangle represents one hidden unit. Within each
rectangle, the size of the smaller rectangles represents the net input to the
unit for a particular problem. Negative net input is shown by filled squares,
and the size of the square indicates the magnitude of the net input.

encoded, but for the “edge” digits (2 and 9, or 0 and 9), there are only neighbours to one
side of the digit. Hence, other digits (e.g., 5 and 6) supply a larger input.

The bias towards the central digits may be one of the reasons why 6s show fast RTs. The
same could be said of 5s problems, however other simulations show that the effect on 5s
is not significant. The 0�0 to 9�9 experiment was re-run using the MATHNET encoding.
Each operand is represented by activating 3 consecutive units across the 12 input units.
The extra 2 units allow the encoding of 0 and 9 to have activation on both sides. Hence,
no input pattern is favoured, except for ties which are intentionally favoured.

The results from these simulations are similar, and arguably better, than the results
from the previous input encoding. Table 3.7 summarizes the errors, and figure 3.13 shows
the RTs.

For this experiment networks with 12 and 20 hidden units were trained. As can be
seen from table 3.7, the 20 hidden unit network made much fewer errors, but all of the
errors were operand related. The 5s dip vanished for the 20 hidden unit network, but
the overall problem-size effect was slightly better than the 12 hidden unit network. The
5s dip is prominent for the 12 hidden unit network, and the 6s dip is absent. In previous
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Figure 3.12. RTs from simulations of 10 networks trained with equal frequencies only.

experiments the 10 and 12 hidden units were used because this was the smallest number
of unit that would reliably learn the training set. However, these results suggest that
the quantity of hidden units is an important parameter for the model, and the effect of
varying the number should be explored in more detail.

3.4.4 Predictions for the 10, 11 and 12 tables
Children are taught the multiplication tables up to 10, and they were once taught them
up to 12. Out of curiosity, the cascade model was trained on 10, 11 and 12 problems. The
input and output layers were expanded to accommodate the extra numbers, and a total
of 15 hidden units were used—a similar expansion to the one required to model 0s and 1s
problems. The input encoding was the MATHNET encoding described in the previous
section.

There are a number of uncertainties with this simulation. First, it is not clear what
kinds of errors or RTs to expect from adults. Intuition suggests that: 10s problems will be
solved very quickly; 11s problems may be solved almost as quickly because of the pattern
to most of the problems (for N less than 10, 11�N=NN, e.g., 11�4=44); 12s will probably
be the slowest of problems. A low error rate might be expected for 10s, a high error rate
for 12, and possibly some kind of rule-based errors could be observed for 11s problems.
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Figure 3.13. RTs from simulations of 20 skewed networks with 12 hidden
units and 20 networks using 20 hidden units. Both networks used MATH-
NET’s input representation.

Skewed nets Adults
12 hidden 20 hidden

Operand errors 90.45 100.0 86.2
Close operand errors 82.08 98.32 76.74
Frequent product errors 18.07 26.62 23.26
Table errors 9.55 0.0 13.8
Operation error 1.05 0.0 13.72
Error frequency 9.51 0.83 6.3

Table 3.7. Percentage breakdown of errors for networks using the MATHNET
encoding. Figures are mean values from 20 different skewed networks with
12 and 20 hidden units, and mean values from 42 adult subjects (Harley 1991,
appendix B). Adult scores other than error frequency were recomputed from
Harley’s data.

Second, it is not obvious that two-digit operands are handled in the same way as
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one-digit problems. Rather than make any more assumptions the 10, 11 and 12 operands
are represented in the model in the same way as the other operands.

Finally, what frequency skew should be used for the extra problems? In this simulation
the Siegler skew was used for problems 0�0 to 9�9, but a linear skew was used for 10,
11 and 12. For example, a relative frequency of 0.22 was used for 10�10, down to 0.1 for
12�12. This was produced by the arbitrary function:

frequency =
180� product

360

Ten skewed and equalized networks were trained under these assumptions. The
resultant error distribution was comparable to previous simulations (95 per cent operand
errors, 73 per cent close-operand, 3 per cent table errors). No particular patterns were
observed. The skewed network produced, on average, 1.11 per cent of omission errors.
That is, on those trials no output reached the threshold within 100 cycles. The equalized
networks produced no omission errors.

The RT graph (figure 3.14) is not unlike the ones reported for the simulations using
the MATHNET input encoding. The 12s problems are among the slowest problems, and
the 11s problems are solved relatively quickly, but the 10s are slower than expected. The
graph shows dips for the primes 3,5,7 and 11, although the 5s dip is not present for the
equalized networks. The disappearance of the 5s dip is perhaps due to the reduction in
“uniqueness” of the 5s problems. The 10s problems interfere with 5s products, making
5s harder to learn. If 10s really are as easy to recall as intuition suggests, then the model
offers a poor account of 5s and 10s recall. This is further discussed later.

A point to note here is that a change in the distribution of products has changed
certain aspects of the RT graph.

3.4.5 Damaging the network
The results from experiments with brain-damaged subjects (e.g., McCloskey, Aliminosa
& Sokol 1991) offer an additional source of findings to compare to the model. In this
section results are presented from various kinds of “lesions” made to trained networks.
As described in section 2.1.2, the main results from the literature include:

1. Uniform damage for zero problems. That is, the zero problems should show equal
amounts of damage.

2. Nonuniform damage for non-zero problems.

3. Generally, larger problems are more prone to damage.

4. The distribution of errors are similar to the non-damaged subjects (e.g., errors
should be mostly operand errors).

5. There is a close correspondence between complimentary problems. That is, the
performance on 4�6 should be the same as performance on 6�4.

There are many ways to damage a network, including: removing units, altering
weights, changing the activation functions, damaging the input or output units. The 20
skewed networks from the 0�0 to 9�9 experiments were damaged in the following ways:
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Figure 3.14. Predictions for 10, 11 and 12 times tables.

0 1 2 3 4 5 6 7 8 9
0 0 44 32 0 0 0 0 0 0 0
1 40 0 0 36 100 0 0 0 0 32
2 0 0 0 0 0 0 0 100 0 28
3 0 0 0 0 0 0 0 0 100 0
4 0 100 0 0 0 100 0 100 0 0
5 0 0 0 0 0 0 100 0 100 0
6 0 0 0 0 72 100 100 0 0 0
7 0 0 100 0 100 100 0 0 100 0
8 0 0 0 100 0 96 0 100 100 88
9 0 100 100 0 0 100 0 0 0 0

Table 3.8. Percentage error on each of the problems 0�0 to 9�9 for one
network produced with “relative” damage.

1. Adding a different random value to all weights (“absolute” damage).

2. Multiplying each weight by a different random value (“relative” damage).
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0 1 2 3 4 5 6 7 8 9
0 100 100 100 100 100 100 100 100 100 100
1 100 100 0 0 0 100 0 0 0 0
2 100 0 0 0 0 0 0 0 100 0
3 100 0 0 0 0 0 0 0 0 0
4 100 0 0 0 0 0 0 0 0 0
5 100 100 0 0 0 0 0 0 0 0
6 100 0 0 0 0 0 100 0 0 0
7 100 0 0 0 0 0 0 100 100 0
8 100 0 100 0 0 0 0 100 80 0
9 100 0 0 0 0 0 0 0 0 0

Table 3.9. Percentage error on each of the problems 0�0 to 9�9 for one
network produced by removing a hidden unit.

3. Randomly deleting a hidden unit.

4. Reducing the magnitude of the weights by a fixed amount.

Each kind of damage was tried with a variety of parameter settings. Each network
was tested 25 times on each of the 100 problems, with response thresholds randomly
selected between 0.8 and 0.9. This equates to simulations without any time pressure. In
all cases damage resulted in an increase in error rates and in omission errors.

The values of the parameters of each kind of damage were as follows: for absolute
damage each weight was incremented by a random value between �1:25; for relative
damage the value was �0:2; one hidden unit should be removed; and for magnitude
reduction, each weight was reduced by 1=4.

Relative and absolute damage gave similar results. There was no correlation between
error rate and product size. Omission errors occurred on an average of 37 per cent of
trials. Operand errors and close-operand errors were prominent, and all errors were
nonuniform. Zero problems were almost always undamaged. There was little similarity
between complimentary problems. As an example, the errors resulting from relative
damage for one network are shown in table 3.8. The errors include omission errors.

By deleting a single hidden unit networks could be made to exhibit non-uniform
damage on non-zero problems, and showed a tendency towards uniform damage for
zero problems. Seven out of 20 networks showed complete uniform damage for zero
problems. That is, all zeros problems were either 100 per cent correct or 100 per cent
incorrect. Six networks were mostly uniform, with just 2 of the 19 zero problems showing
a different degree of damage. The other networks were non-uniform on 4, 6 or 8 zero
problems. Corresponding problems tended to show the same amount of damage, as can
be seen from table 3.9. In general, there was no correlation between product size and
error rate, and operand errors varied between 22 and 73 per cent, with a mean of just 45
per cent. Omission errors also varied greatly, with a mean of 47 per cent of all errors.

Uniformly reducing the magnitude of weights produced the following effects. There
was a reliable correlation between product-size and error rate, and damage was non-
uniform—including zero problems. Operand errors were variable, and omission errors
were high (around 50 per cent of all errors). Complimentary problems showed similar
error rates.
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The results from these simulations are preliminary and inconclusive. It seems possible
that deletion of just the right hidden unit can produce uniform errors for zero problems,
whilst allowing non-uniform damage on other problems. Other kinds of damage show a
correlation between the size of the problem and the number of errors made. Presumably
a mixture of damage (e.g., some unit loss and some weight reduction) will be able to
produce the behaviour seen in brain-damaged patients. However, current simulations
show very high increases in omission errors and a noticeable reduction in the percentage
of operand errors. The reduction in operand errors may not be serious, as McCloskey,
Aliminosa & Sokol (1991) report that their patients produced operand errors on between
35 and 80 per cent of trails. The large increase in omission errors may be more important,
as 5 out of 7 of McCloskey, Aliminosa & Sokol’s patients showed no omission errors, and
the other two omitted an answer on 46 and 24 per cent of trials (p. 177).

Further simulations are required to clarify these results. For example, it may be
possible to change the parameters on the methods of damage to reduce omission errors,
or just lower the response threshold. The general problem here is that there are many
parameters to consider: not only parameters to the methods of damaging networks,
but different ways to damage networks. There also appear to be no good reasons for
choosing one kind of damage over another, or indeed, for supposing that one kind of
damage simulates the damage suffered by patients.

For these experiments mean results are not generally useful. This creates a problem
because one cannot easily be certain that an observed pattern of damage is typical and
reliable, or just an artifact of a particular parameter setting. Rather than report mean
statistics, it is necessary to classify each network in some way. It is not obvious how to
form these categories, but they might include some kind of error rate uniformity measures
for each table. More work is required before this aspect of the model can be systematically
explored. It is nevertheless encouraging to see that non-uniform errors can be produced,
and that there is some potential for producing uniform errors for zero problems.

3.5 Discussion

The preceding simulations and analysis have suggested the following causes for the
problem-size effect and operand errors:

� The input encoding. Presented digits are associated with all the products in the digit’s
table, producing operand errors. Close-operand errors result from false associations
formed by the coarseness of the input encoding.

� The presentation frequency. Smaller problems are presented more often than larger
problems, and this is the foundation of the problem-size effect.

� The nature of the facts themselves. Certain problems, such as 5s, may be easier to learn
due to the distribution of the associated products. That is, 5s products participate
only in problems involving the digit 5, unlike, say 6s products, which are found in
problems where a 6 is not a presented operand. This effect may be enhanced or
reduced by the choice of output encoding, or more generally speaking, by the details
of the input-output mapping to be learned in the context of the recall architecture.

The simulations have shown that the model is affected by these parameters. The
change from a one-of-N input encoding to a coarse encoding changed the simulation
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results. Changes in presentation frequency were not explicitly explored, and were com-
pounded with changes to the problem set brought about by the introduction of zero and
ones problems. The distribution of products was modified with the introduction of 10s,
11s and 12s problems. This brought about a change in the RT results. Future work should
look at how systematic changes to these parameters change the performance of the model.

Some of the general issues that arise from the model are discussed below. The next
section looks at the choice of output representation. Section 3.5.2 discusses the problems
posed by the zero and ones problems. Section 3.5.3 speculates as to how verification and
primed production tasks could be incorporated into the model.

3.5.1 Choice of output representation
Non-table errors are not accounted for because the outputs of the model are represented as
product nodes. This choice has a number of consequences. First, it means that a separate
read-out mechanism is required to capture non-table errors. One possible scheme would
be to add a tens layer and a units layer above the product layer in the network. The details
of this scheme have not been worked out, but one could imagine that the system would
be similar to the current model. Each unit or ten node would receive a different number
of connections from the product nodes. For example, the tens unit representing 60, would
be connected to 2 products (64 and 63), whereas the 70s unit would receive input from
just the 72 product. In this way, each of the tens and units nodes would show differing
RTs and error rates. Whether this system produces non-table errors while preserving the
distribution of the other types of error remains to be seen. Note, though, that the scheme
brings added complexity: is RT measured when either the tens or units fields exceed a
threshold, or both? Does the read-out mechanism operate in parallel with the rest of the
system, or is it used after a product unit exceeds threshold?

Results from the work of Harley (1991, pp. 99-108) support the plausibility of a
separate read-out mechanism. Harley’s experiments measured the table-error rates of
subjects solving multiplication problems, and the error rates for just reading numbers.
The analysis of the results suggested that non-table errors occurred in 0.14 per cent
of reading trials. Multiplication produces 0.52 per cent non-table errors. This is not a
statistically significant difference in error rates. As such there is no reason to reject the null
hypothesis that non-table errors from reading and recall result from the same mechanism.
Presumably this shared mechanism is not part of fact recall, and is more likely to be part
of some kind of read-out mechanism—the number production element of the modular
structure of number processing shown in figure 1.1. To pursue this argument further
requires the specification of an explicit read-out mechanism. This aspect of the model is
an avenue for future study.

A second point of interest surrounds the formation of product units. It is not unrea-
sonable to suppose that certain, often encountered, numbers are represented as single
nodes. However, there are limits to this representation, but it is not obvious what these
limits are. At some stage a more general “parsing” mechanism may be employed to
handle longer numbers, and it may even be related to the read-out mechanism. It is
assumed here that memory for simple arithmetic facts is a modular system, but at some
stage the connection between product units and other representation of number should
be explored.

The cascade model does not attempt to explain the formation of product units, and
simply assumes that product units are pre-formed. How and why certain numbers are
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Figure 3.15. Possible account of verification for the cascade model.

represented in this way is one of the many questions not addressed here.

3.5.2 Rule based processing
Error results from normal and brain-damaged subjects indicate that zero and ones prob-
lems are not handled in the same way as other multiplication facts. To recap, RTs for zero
and ones problems are low, and zero errors tend to be of the form 0�N=N. Brain-damaged
subjects show uniform impairment on zeros problems, and recover the ability to solve
zero problems after remediation on just two zero problems. The cascade model, although
fast on zero problems, is not fast on ones problems, and pays a penalty of offering zero
as an answer to many problems.

Section 3.3.3 speculated as to how the model could be modified to account for these
findings. Specifically, it was suggested that the introduction of addition would reduce the
strength of zero associations and offer the possibility of 0�N=N errors. This suggestion
is hard to evaluate as no accounts have been given of how addition and multiplication
interact.

The suggestion of a separate mechanism, presumably using rules, for 0 and 1, is not
without problems (section 2.1.3), but is attractive. The results from the cascade model,
for example, are best when zero and one problems are excluded. No models have been
offered to explain how such a dual-process account would work, and the task of building
such a model seems large. Rather than do this, I suggest first further exploring the models
we have. In particular, the mixing of addition with multiplication has been left almost
untouched. Yet children learn multiplication only after learning addition, and addition
appears to fuel zero and one errors. I propose the interactions between the two operations
should be explored before separate mechanisms for certain operands are suggested.

3.5.3 Verification and primed production tasks
The settling models (IA, BSB, MATHNET) appear better suited to verification and priming
tasks than the cascade model. The typical verification account (e.g., from BSB and IA)
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involves clamping input and output units and measuring the time required to reject or
accept the suggested product. This apparently straight-forward way to model verification
has a number of problems. First, it is necessary to only slightly activate the output layer. If
the product to be tested was presented with full activation, surely the response mechanism
should respond with that product immediately. The alternative is to delay the response
in some way, but this has not been suggested by any of the models. It is not clear why the
output layer should receive less activation from the presented problem than the inputs
do. The motivation for this assumption is not clear from the IA account, and the BSB
account does not clarify what assumptions it makes about product priming.

Figure 3.15 sketches one way in which the cascade model could be changed to capture
verification. This speculative suggestion involves adding a separate network to the
existing recall network. The verification network is presented with a product, while the
recall network is presented with the two operands as usual. The hidden layer of the recall
network forms part of the input to the verification network, and this should allow the
system to verify the presented product. Note that a shared representation is presumed
because it seems wasteful to suppose that the verification network requires a completely
independent fact store.

The details of the verification system and the coupling to the recall network have
not been worked out. For example, it is not clear how or why the verification network
is trained, or if the training aids the recall network. Nor is it clear how control is
allocated between the networks. However, it predicts that the verification network can
be damaged, whilst the recall network remains intact. If the weights between the hidden
layer and output layer of the recall network were independently damaged, it is possible
that verification could proceed while production fails.

There is little evidence to support or refute the idea of verification process that is,
in some interesting sense, separate from the recall process. However, tentative support
comes from the study of a single brain-damaged subject by Dagenbach & McCloskey
(1992). The subject was much better on the production task for subtraction than addition
or multiplication. However, performance was comparable on all three operations for the
verification task. Dagenbach & McCloskey “…suggest that the production/verification
differences may be taken as support for the view that arithmetic fact retrieval processes
are not the same in production and verification tasks” (p. 20).

Support for a separate mechanism presents a second problem for the settling models’
account of verification. As verification is perceived as the product of a bidirectional
settling process, why should damage selectively alter performance on just verification or
just production? For the cascade model, a separate mechanism seems necessary to even
begin simulations of the verification task.

Primed production is not so easy to model with the cascade system. The task requires
some way to prime particular products before a problem is presented. Although output
units could be activated before recall, it is not clear how this can be done without triggering
the response mechanism (as described above). However, it is possible to show that the
cascade model is sensitive to the context in which a problem is presented. In figure 3.16,
the system has been presented with 8�4. After 40 processing cycles the input was
changed to 6�8 without resetting the network to the “don’t know” state. The vertical line
in the centre of the figure shows the point at which the input was changed. The network
required 40 steps to reach threshold for the problem 6�8, stepping up through the 8 times
table to reach the correct product.
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Figure 3.16. 8�4 followed by 6�8.

Now consider figure 3.17. Here the first problem was 3�3, and the second remained
at 6�8. The simulation shows clear differences in the processing, and 49 steps were
required for an output unit to reach threshold on the 6�8 problem. The simulation had
to ignore the fact that the previous product was above threshold when processing of the
next problem began. This difficulty may be avoided if it is assumed that the activity
of the system decays, to some degree, towards the zero-state before another product is
presented.

These simulations also suggest a way for the model to produce different responses
for a particular problem. Previous simulations have been deterministic: the response to a
particular problem is always the same after training is complete. This is, in part, because
the state of the system is reset at the start of processing to the “don’t know” state. If
the system is not reset, different responses will be produced. This context sensitivity is
another possibility to be pursued.

3.6 Summary

The cascade model can capture aspects of RTs and errors of adults recalling multiplication
facts. This chapter has outlined the assumptions required to do this, including assump-
tions about problem frequency and input representation. An initial analysis of the system
has been presented, and variations on the model have been explored in an attempt to
identify the factors that determine the behaviour of the system. In addition, simulations
have been run to address the issue of zero and ones problems, and of network damage.

The cascade model requires further work:

� The RT results could better match the human results. With a one-of-N encoding,
good RT curves are produced, but the errors are not so well distributed.

� Tie problems are solved by an ad hoc inclusion of a tie flag.

� The model does not capture the phenomena associated with zero and ones problems.
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Figure 3.17. 3�3 followed by 6�8.

� Non-table errors are not explained.

� The verification and primed-production tasks are not accounted for.

However, an attempt has been made to present an explicit set of simulations that can
be easily appraised. This is in contrast to other poorly-specified connectionist models,
with the exception of MATHNET. Construction of the model has lead to a number of
suggestions, in particular concerning the nature of false associations and coarse encoding,
and of the verification task and zero and ones problems.

All of the connectionist models discussed use differing methods to measure RT, differ-
ent input or output representations, different learning rules, training sets, hidden units,
and so on, yet all show some degree of match to human behaviour. It seems that any kind
of associative structure, with appropriate parameter settings, will fit the human empirical
phenomena. This is encouraging because it seems that associative networks are just the
right tools to model arithmetic fact recall. It is also discouraging because it hampers the
discovery of the features that are responsible for determining the behaviour of human
systems.

Plenty of important differences exist between the systems. The continued devel-
opment of each of the models holds the promise of identifying those aspects that are
pertinent to understanding human multiplication abilities—and weeding out those that
are not.

As mentioned above, the cascade, MATHNET and IA models have been developed
independently. One useful direction for this work is to look at the assumptions of the
other models, and to see how they effect the performance of the cascade system. This
could be profitable for discovering combinations of features that are sufficient to account
for human behaviour. For example, although a tens and units output representation was
originally used in the cascade model, it did not capture the distribution of errors found for
adults. However, the model has developed since then, and it could be that the negative
result was due to other parameters, such as the input representation. On the other hand,
the representation of products may be a necessary feature of the model.
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Throughout the chapter various ideas have been proposed as directions for future
work. Some of the quickest extensions to the model include: adding a tens and units
read out mechanism; detailing and training the verification network; testing the effect of
various parameters, such as the number of hidden units or training times. Longer term
goals include: exploring the relationship between addition and multiplication; studies
of the effect of changes to the input representation, such as logarithmic input encodings;
studies of pre-multiplication number understanding; systematic studies of network dam-
age. However, the most pressing need is for a further systematic analysis of the existing
networks: why are 9s so easy to recall? What are the effects of changes to problem fre-
quency? What happens to the network as the weights develop during training? What are
the effects of changes to the distribution of products? How would systematic changes to
the sharpness of the input encoding alter the results? An understanding of the influences
that lead to successful models may help develop an understanding of human arithmetic
skills.
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Part II

Multicolumn Arithmetic



CHAPTER 4

Symbolic Accounts of Arithmetic

Different tasks lend themselves to different styles of representation (Sloman 1985). As a
rule of thumb it makes sense to use the most appropriate technology to model the phe-
nomena of interest. An example would be to use connectionism for low-level processes
(e.g., motor control), but switch to symbolic systems for higher-level tasks, such as plan-
ning (Clark 1989). Such hybrid views of cognition are attractive (Thornton 1991, 1992a;
Rose 1991; Hendler 1989), but how do we know which technology is most appropriate
for a given task?

This chapter reviews the symbolic models that have been built to capture the way
children learn multicolumn arithmetic. Solving problems like 32�27 or 49�12 involves a
host of skills: not only do you need to know the arithmetic facts, you also need to know
how to borrow and carry, which column to process next, what to do when a number does
not have a number below it (as in 12+5), and so on.

It appears that students are following rules when solving multicolumn problems.
Perhaps the main evidence for this comes from the observation that children discover
faulty rules (malrules) when learning arithmetic. Hence, it seems appropriate to use
something like a production system to model multicolumn arithmetic. Indeed, to date
the only systems used to investigate arithmetic have been rule-based systems (Brown &
Burton 1978; Young & O’Shea 1981; Brown & VanLehn 1980; VanLehn 1983, 1990).

This chapter first looks at the kinds of mistakes children make when solving multipli-
cation problems. The style of symbolic modelling is then described by briefly discussing a
production system for multiplication. Section 4.2.2 considers the Young & O’Shea (1981)
approach to modelling children’s errors, and section 4.2.3 looks at the way VanLehn
(1990) has modelled the errors. The conclusion is that the symbolic models offer a very
plausible interpretation of children’s arithmetic. Nevertheless, section 4.3 argues that
there are good reasons for looking into a connectionist account of the phenomena. In
particular, I aim to show that connectionism may be an “appropriate technology” for this
domain, despite the phenomena’s rule-like appearance. Many of the assumptions and
ideas from the VanLehn and Young & O’Shea accounts are taken on board in chapter 5
which describes a connectionist model of multicolumn arithmetic.
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4.1 Bug phenomena

At school children are introduced to multicolumn arithmetic over a number of years in
lessons of ever-increasing difficulty. Maths textbooks (Howell, Walker & Fletcher 1979)
suggests the following problem ordering for addition:

1. One column addition, sum < 10.

2. Two digit numbers, no carrying.

3. Addition of three rows.

4. Addition with gaps.

5. Two digits with carry.

6. Three column addition, without carry.

7. Three column with carry.

There is a similar sequence for multiplication, and VanLehn (1990, p. 13) identifies one
for subtraction. By working through these stages students build up a hierarchy of maths
skills, enabling them to tackle the next level of problems. Interestingly, Resnick & Ford
(1982, p. 55) discuss studies involving a “deep end” approach to arithmetic teaching,
in which students are just taught the higher level skills. The reasoning behind this
idea is that the student should be given meaningful problems, rather than many boring,
relatively simple problems. Of course, students taught this way still end up learning all
the prerequisite skills. However, the majority of students seem to learn best when led
through a hierarchy of skills, and this is the way arithmetic is taught in most schools.

Each lesson typically begins with the teacher working an example, and then the
children solve similar problems on their own. Textbooks work in much the same way.
An example is worked, by printing a snapshot of the various stages that need to be
completed, and then there is a list of exercises.

There are at least two multiplication algorithms that are taught in schools. The one
considered here involves building up the product of a multiplier on one row. For example:

1 2
� 3 4

8

1 2
� 3 4
4 8

1 2
� 3 4
4 8
0

1 2
� 3 4
4 8
6 0

1 2
� 3 4
4 8

3 6 0

1 2
� 3 4

4 8
3 6 0
41 0 8

Studies of errors in arithmetic (Brown & Burton 1978; Burton 1982; Brown & Van-
Lehn 1980) have characterized students as having buggy procedures—perturbations to
the correct procedure. For example, one error for multiplication (zero-in-first-row) begins
like this:

4 3 6
� 5 1
4 3 6 0

The student has incorrectly inserted zero into the first column. Another error is
multiplies-using-addition-pattern:
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3 2

1 9

3 2 0

6 0 8

2

+

x

Multiplicand

MultiplierRaised
carry

Renaming

Partial product

1
2 8 8

1

Carry digit

Annexed zero

Figure 4.1. Terminology used for multiplication problems. For two row
addition, the problem numbers are referred to as the “addends”.

3 4
� 1 2
3 8

Here the student has multiplied each digit in the lower row by the digit above it in
the upper row. These kinds of errors are quite different from the recall errors discussed in
previous chapters. Rather than slipping and incorrectly following the correct arithmetic
procedure, students are systematically using faulty rules. VanLehn (1981) reports that
students exhibiting a particular bug can reproduce that bug a week later, giving exactly
the same mistakes, digit for digit. However, there are limits to this stability, and this is
discussed below.

Many different kinds of bugs have been described, some frequent, some rare. The
most specific bug catalogues previously published have been for subtraction. I have
decided to look at long multiplication and addition, so appendix A and B lists 39 addition
and 63 multiplication bugs found in a trawl of the literature. Details of any particular
bug, such as zero-in-first-row, can be found in these appendices. The descriptions use the
terminology introduced in figure 4.1.

There is a great deal of interpretation in classifying a given mistake as being one bug
rather than another. For example, if the child makes the mistake 6�0=6 as part of a prob-
lem, is that the bug N�0=N, or copies-multiplicand, or even adds-using-multiplication-
pattern? Another problem is deciding that a given error is systematic. Different authors
tend to take different approaches. The appendices are the result of combining the bugs
listed by three authors, so at one level the problem of interpretation was solved because
the authors had already classified the bugs. However, as discussed in appendix A, the
interpretation problem then becomes one of finding corresponding bugs between the
authors. The controversy surrounding bug categorization is not pursued further here,
and it is assumed that at least some of the errors made by children are well described by
buggy rules.

A number of studies have been conducted to discover the frequency of bugs. Of
the 1147 seven- and eight-year-old children from VanLehn’s Southbay study, 33 per cent
harboured bugs, and a total of 134 distinct bugs were identified. Individuals may have
more than one bug, and their set of bugs will change over time. Cox (1974) found that
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Conditions Actions

INTO: [processmult] ) readintandb();

SM: [t ?t] [b ?b] [c ?c] ) do_calc();

NX: [next_top] ) [processmult] shift_top_left();

WM: [result ?u] [carry ?c] ) writedown(); [next_top]

CC: [no_more_top] ) checkcarry(); [checkbottom] [addzero]

CB: [checkbottom] ) check_bottom();

FI: [none_left] ) [stop]

NB: [no_more] ) endmult(); [startadd]

CO: [startadd] ) readincolumn();

DA: [column ?len ?dig] ) do_add();

ML: [next_left] ) [startadd] moveleft();

WA: [u ?u] [c ?c] ) writeadd(); [next_left]

CA: [no_more_digits] ) checkadd();

AZ: [addzero] ) add_zero();

Table 4.1. Production rules for correct multiplication.

around 56 per cent of the 564 grade 1–6 children in her study made systematic errors
in addition, multiplication and division. However, 10 percent were making “random
errors”, and the remaining children were error-free or just slipping. VanLehn (1981, p. 6)
also found that 10 per cent of grade 3 children’s error could not be analysed in his study
of subtraction. Still, at most 90 per cent of children’s behaviour can, in principle, be
explained by reference to a possibly faulty rule set.

4.2 Models

The formalization of the child’s rule set is discussed in this section—including rule acqui-
sition, operation and representation. Starting with the account of arithmetic developed
by Young & O’Shea (1981), I hope to show how the phenomena can be neatly modelled
by production systems. Repair theory (Brown & VanLehn 1980) appeared at about the
same time as the Young & O’Shea model, and has since gone through many refinements
to reach its current form as Sierra theory (VanLehn 1990). Despite a number of criticisms,
Sierra theory is the best account we have of faulty rule acquisition. The reasons for this
are described below.

4.2.1 A production system for multiplication
Young & O’Shea produced a production system to model correct and buggy subtraction.
In the same style as the Young & O’Shea system a multiplication production system
was built by Shaaron Ainsworth as part of her MSc work at Sussex. Table 4.1 lists the
production rules for correct multiplication. In what follows, many of the implementation
features of this particular system are glossed over, and it is assumed that the model works
in much the same way as the Young & O’Shea system.

As is usual of production systems the left-hand side of the productions specify queries
to be matched against a working memory. The right-hand side specify actions which can
be either calls to procedures (e.g., do_calc()) or items to deposit in the working memory
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(such as [processmult], the initial goal). In working memory the partial solution is
represented by a list containing: the two digits being multiplied; the result of the current
row of multiplications; two numbers indicating which digits in the multiplicand and
multiplier are being considered; and, the number currently being carried. For example,
while solving the problem 34�22, the representation will be…

[ [3 4] [2 2] result=[6 8] topdigit=1 botdigit=2 carry=0 ]

…indicating that the digits just considered were 3 (topdigit is 1, the first number in
[3 4]) and 2 (the second number in [2 2]). The result of the row is 68, with no carry. In
the Young & O’Shea model there was no explicit representation of topdigit or botdigit,
or their equivalents. Their production system used operations such as ShiftLeft and
NextColumn to focus attention without worrying about the underlying registers. How-
ever, registers are required, and it is useful to have them explicitly shown.

Using this representation of the problem, and thetopdigit andbotdigit registers, the
answer can be gradually built up in working memory. The procedure readintandb, for
example, identifies the digits to be multiplied. Shift_top_leftupdates thetopdigit and
botdigit registers to focus on the next digits in the problem. Eventually, shift_top_left
runs out of digits and deposits [no_more_top] in working memory. This then caused
the productions system to enter into a different part of the arithmetic routine, ready to
process the next multiplier.

The details of this model are not of great interest here, but note the style of processing.
The model captures multiplication as small skill modules, which are pattern or event
driven. For example, certain actions bring about the recognition of certain other facts
about the problem, which leads to other rules firing as happened with [no_more_top].
Central to the model is the use of registers, such as topdigit, to keep track of the system’s
position in the problem. Registers are also used in the eye movement models of arithmetic
proposed by Suppes, Cohen, Laddaga, Anliker & Floyd (1983), and will be used in the
connectionist model described in the next chapter. Finally note that the skill has been
described at a level equivalent to how one might describe multiplication verbally. Clearly
there are other processes going on which are not modelled by the production system,
such as eye movements, recall of arithmetic facts, physical action of writing, and so on.
However, it seems that this level is adequate for capturing arithmetic bugs.

4.2.2 Modelling bugs—the Young & O’Shea way
Certain bugs can easily be modelled by removing a rule from the production system. For
example, removing the AZ rule (from figure 4.1) produces the bug forgets-annex. Other
bugs require that rules in the rulebase are replaced with faulty versions. For example,
quits-after-first-multiplier is generated by replacing the rule CB with the following:

bugCB: [checkbottom] ) [no_more]

Young & O’Shea modelled errors in subtraction in this way, by adding and omitting
various rules. They discovered that a small number of changes could cover a large
number of observed errors. As an example Young & O’Shea note (p. 163) that two rules
(one correct, one faulty), in four possible permutations (each either present or absent from
the rulebase) could account for 115 out of 124 errors found in their corpus, in addition to
the correct algorithm.

70



To account for all the observed errors, Young & O’Shea included a number of other
faulty rules. Clearly, it would be trivial to construct a production system to account
for a particular error, and such a production system would be of no psychological use.
However, an attempt was made to constrain the productions in various ways. Young
& O’Shea’s aim was to model a particular child with a particular production system.
Different children will have different productions, and each child’s set of rules will change
over time. Given this constraint, it is still possible to build a production system “…whose
conditions were so complex, bizarre, and ad hoc that each subtraction problem was
effectively treated as a separate case…” (Young & O’Shea 1981, p. 164). This consideration
applies to all cognitive models, and it is not possible to exactly specify a set of constraints
to avoid ad hoc models. Young & O’Shea used three heuristics to guide their model
building:

1. Adopt a particular style for the rules.

2. Avoid problem-specific symbols in the rules (i.e., numbers).

3. Minimize the number of changes between rulebases.

Using these heuristics, Young & O’Shea optimized a number of production systems
to fit the errors found in their data. Starting with the correct production system for
subtraction, rules were changed to improve a score. The score is the number of errors
predicted by the system, minus the number of false errors. False errors are not errors
which have never been observed (star bugs, discussed below), but are due to the fact that
children are not fully consistent in applying faulty rules. It may be that a child exhibiting
a particular error does not make the same mistake at every opportunity. A production
system following a rule will always make the error. False errors are the mismatch between
the child’s and the system’s error performance. Initially, the correct system makes no false
errors, and predicts no bugs. Young & O’Shea mutated the rulebases and finished with
eight production sets which accounted for 160 of the children’s errors, missing 18 and
falsely predicting another 32 (1981, table 3, p. 166).

It is interesting that arithmetic skills can be captured in this way, but there is no ac-
count of where the rules (correct or otherwise) come from. The modularity of productions
means that learning can be thought of as the accumulation of rules (Young 1974; Neches,
Langley & Klahr 1987), although no such account is given. The Young & O’Shea model
provides snapshots of children at various stages of development, but does not discuss the
transition between stages (acknowledged on p. 176). There are ways to incorporate learn-
ing processes into the Young & O’Shea “family” of models. Klahr (1992) lists a number
of mechanisms, including condition generalization and discrimination, rule composition
and chunking, proceduralization, and rule strengthening. There is a gradual nature to
some of these mechanisms, such as rule strengthening, but not to all of them. At some
stage new rules need to be added to the rule base (Klahr 1992, p. 170). This is what is
meant by the phrase “snapshot account”: at one moment the rule base contains a certain
set of rules, and at the next is contains some new ones. The Young & O’Shea model is
an extreme example, but the granularity of other models (including VanLehn’s) means
that they also qualify as snapshot accounts of development. This style of learning will
be contrasted with the gradual learning performed by connectionism later in the chapter.
Rather than discuss ways in which learning could be incorporated into the Young &
O’Shea model, attention will be focussed on VanLehn’s learning system in section 4.2.3.
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Inconsistent rule following is not accounted for by the Young & O’Shea model. The
term “bug migration” (Brown & VanLehn 1980) refers to the phenomenon of children
switching between sets of bugs. Some bugs are persistent, lasting for years, while others
come and go over a short period to time—even during a single test. Hennessy (1990)
believes that there is much more instability in children’s performance than has been
previously suggested. She argues (pp. 178–180) that a more accurate, and less subjective
means of bug diagnosis is required. The Cox (1974) study defined a bug as an incorrect
procedure observed on three out of five problems. This kind of definition leads to the
three error categories of slip, bug and undiagnosed. VanLehn (1981) uses a different,
more complicated method, designed to “mimic the intuitions of human diagnosticians”
(p. 15). A student is said to have a particular bug if the diagnosis makes “enough”
true predictions, and at least more true predictions than false predictions. “Enough”
is defined by a number of conditions, e.g., 75 per cent of predictions must be true (for
further discussion on the problems of diagnosis, see Brown & Burton 1978; Burton 1982).
For Hennessy, any faulty procedure counts as a bug, no matter how frequent it is, with
the exception of slips. This definition clearly eliminates the “undiagnosed” category of
errors, but increases the instability associated with a given student.

A number of studies have attempted to pin-down the extend of bug migration. In a
follow-up study, one year after her original study, Cox (1974) found that 25 per cent (16
of 64) students exhibited the same bug as in the previous year, and 17 per cent (11 of 64)
were showing a different error over all the arithmetic operations. VanLehn (1981, 1990)
found that in the short term (over 2 days) only 9 per cent (3 of 32) students produced the
same errors, where as 38 per cent (12 of 32) exhibited bug migration for subtraction only.
The different ages of the children, different experimental procedures, and small sample
sizes makes it difficult to compare the Cox and VanLehn results on bug migration.

Despite the problems of diagnosis, it is apparent that bug migration is a common
phenomenon. Migration is usually defined as changes occurring “without intervening
instruction” (VanLehn 1990, p. 54), but this does not exclude the possibility that some
kind of learning is causing migration. However, the Young & O’Shea model does not
address bug migration or learning, and as such it fails to capture important aspects of
children’s arithmetic.

4.2.3 Modelling bugs—the VanLehn way
VanLehn’s (1990) Sierra theory of learning arithmetic is the most detailed account of
multicolumn arithmetic to date. Like Young & O’Shea, he focuses on long subtraction,
but asserts that the principles should apply not only across the other three arithmetic
procedures, but also to other domains. The account, a continuation of repair theory
(Brown & VanLehn 1980), tackles two problems of bug migration and learning. Three
elements of his theory stand out:

1. Children’s mistakes are the result of various kinds of syntactic changes to rules. This
not only includes the faulty rules from the Young & O’Shea account, but also run
time changes.

2. Faulty rules are due to the skew in the school curriculum.

3. Learning is from examples, not verbal recipes.
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Several observations support these points. First, it seems that students do not un-
derstand the operations they are performing: they are symbol-pushing (VanLehn 1990,
pp. 38–40). There is now work considering the role of the semantics of arithmetic (Hen-
nessy 1990; Payne & Squibb 1990; Ohlsson & Rees 1991) but there are a number of reasons
why it seems appropriate to just model syntax. To support his “ateleological assump-
tion”, VanLehn points out that students who understand the arithmetic procedure they
are trying to perform should be able to see if their procedure is wrong, and also be able
to fix it. Intuitively it is clear that students can learn procedures without the slight-
est understanding of the underlying principles, and this point appears uncontroversial
(VanLehn 1990, p. 38).

The work of Hughes (1983) also suggests that children have trouble with the syntax
of arithmetic:

The problem is not that young children are completely lacking in their number
concepts…Rather the problem is that they are encountering a novel code, or
representation system, which may be like a foreign language to them (p. 209).

In other words, school arithmetic is, as Donaldson (1978) calls it, “unembedded”.
This is demonstrated by the following protocol from a four year old reported by Hughes
(1983, p. 211):

Adult: How many is two and one more?
Child: Four.
Adult: Well, how many is two lollipops and one more?
Child: Three.
Adult: How many is two elephants and one more?
Child: Three.
Adult: How many is two giraffes and one more?
Child: Three.
Adult: So how many is two and one more?
Child: (looks adult straight in the eye) Six.

These problems with syntax should come as no surprise given the way arithmetic is
taught. VanLehn (1983, p. 82) points out that arithmetic texts are nothing like cookbooks
or other kinds of manuals: they consist mostly of worked examples and exercises. In
contrast to examples are “explanations”—some form of natural language information,
perhaps given by the teacher in class. VanLehn argues (1990, pp. 96–103) that arithmetic
is primarily learned from examples, and not explanation. His justification of this as-
sumption first notes that AI has experienced a number of problems in translating from
natural language to programs. However, there has been much more success in learning
from examples. Second, VanLehn supposes that if children learned mostly via natural
language, there should be language fragments in their bugs, such as references to the
“tens place” or the “multiplicand”. However, VanLehn found that “…85 percent of all
the observed bugs can be described with a small set of visual/spatial features. No bug
requires linguistic features for its description” (p. 102).

So it seems that children learn the steps in arithmetic procedure by example, without
an understanding of the algorithm. But how do they acquire these procedures?
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Learning by induction
Like Young & O’Shea, VanLehn proposes that children have buggy core procedures.
However, unlike Young & O’Shea, VanLehn shows how these procedures can be induced
from the examples given in a lesson. This section describes the learning part of Sierra
(Sierra is the name of VanLehn’s model). In general terms, there is a learner which takes
a lesson, Li, and the current state of a student, Pi�1, and returns a set of procedures that
are consistent with the examples in the lesson P 1

i ; P
2
i ; ; P

k
i . That is, the learner returns

a number of rule sets, some with bugs, and some without. Each of the procedures
can be tested to see how its bugs compare to those of children. Then another lesson is
administered, and the learner generates procedures that can solve harder problems.

Much of VanLehn’s (1990) work is concerned with ways to constrain the learner to
induce just those things that humans learn. Hence, a number of assumptions are laid out,
including:

� New rules are assimilated with the old. That is, the rules of Pi�1 are a subset of
those of Pi.

� One disjunct per lesson. At most one subprocedure (a new branch point) can be
introduced to a rule in a lesson.

� The most specific patterns are induced.

Using a rule representation it is possible to parse arithmetic examples (see figure 4.2).
For problems that the system cannot solve, which are often the problems in the next
lesson, it will not be possible to produce a parse tree. In this situation VanLehn applies
top-down and bottom-up parsing to construct as much of the parse as possible. However,
the resulting parse with have a gap in it where the child nodes do not meet with parent
nodes. VanLehn then uses an algorithm called “parse completion” to fill in the gaps.

For the problems that cannot be solved, there will be a large number of partial parses.
Top-down and bottom-up parsing is used to produce a set of these “skeletons”—the
parent and child nodes that define the gap in a tree. There will be at least one skeleton
from each example that could not be parsed. Because of all the constraints, the intersection
of all the skeletons can produce one unique skeleton. If this is not the case, the algorithm
uses various biases to select a single skeleton. For example, one bias is to select the
skeleton with the lowest parent nodes.

In developing the constrains on the learner, VanLehn stresses the importance of a
well formed lesson sequence. Convention allows the learner to assume that lessons will
obey certain rules (VanLehn 1987). The lesson should introduce just one “knowledge
chunk” (disjunction or subprocedure), and this will often allow the learner to solve
problems that it could not solve before the lesson. VanLehn suggests that “…experienced
teachers generate such lesson sequences naturally, without even realizing that their lesson
sequences obey the two conventions” (1987, p. 7). In short, good teachers give lessons
that make the learner’s task easier.

The skeleton defines the goals and subgoals of a rule. Patterns also need to be learned
to clarify when the rule is to be applied. For this, VanLehn uses Mitchell’s (1977) version
spaces (see also Thornton 1992b, chapter 2). Each example arithmetic problem is defined
by a set of position, fact and action primitives. Patterns may contain factual primitives,
such as “less-than” or “Zero?”. Just three actions are available: writing a character,
erasing a character and overwriting a character with some other character. See table 4.2
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Figure 4.2. An example of parsing a subtraction example (from VanLehn 1990,
pp. 125 and 136). Using the rewrite rules from the top of the figure, the
stages in the examples at the bottom of the figure can be represented as a
tree structure. Note that the rules are context sensitive—i.e., Sub1ColC !
DiffC is only applied when the top digit is� bottom digit. The subscript (C)
indicates the column in which the operation applies.

for an example procedure and problem representation. These primitives were selected
by guess work, and a more informed approach would require a theory of perception.

Of all the patterns that could be induced, the most specific pattern is the one that is
learned. For example, from the subtraction shown in figure 4.3b, the following rule will
be learned:

borrow column = leftmost and left-adjacent

This is the most specific pattern to describe the borrowing column: the column that
is both leftmost on the page and also adjacent to the current column. Most specific is
defined relative to the granularity of the representation language, hence ensuring that
generalization takes place, and the learner does not simply acquire a list of past problems.
There are other technical reasons for why this constraint is proposed. When combined
with the constraint that patterns can only contain conjunctive connectives, it can be shown
that the version space is finite, and there exists a fast algorithm for computing the whole
version space (VanLehn 1990, p. 152). From experimentation with the system, VanLehn
discovered that the most specific rules learned are sufficient for generating impasses.

VanLehn (1990, chapter 6) describes a number of other restrictions on pattern learning.
Indeed, many of the assumptions have been left out, and much of the detail skipped over
in this review. In particular the justifications for many of the assumptions have been
omitted. In essence, though, the learner is a highly constrained inductive mechanism,
learning control structures to parse problems and patterns in terms of a predefined set
of primitives. The constrains are psychologically motivated, and strong enough to make
the learning problem tractable.
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(Problem 1) Object 1 is a subtraction problem
(Column 2) (Column 3) Objects 2 & 3 are columns
(Part 1 2) (Part 1 3) The columns are part of the problem
(First 1 3) Object 3 is the leftmost object
(Adjacent 1 2 3) The columns are adjacent
(Cell 4) (Cell 5) (Cell 6) Objects 4–5 are cells
(Digit 4) (Digit 5) Objects 4 and 5 are digits
(Blank 6) Object 6 is a blank cell

Sub1Col(C) OR

1. [And (Digit T) (Part-of T C) (First T C)

(Digit B) (Part-of B C) (Middle B C)

(Ordered C T B) (Adjacent C T B)

(Value-of TV T) (Value-of BV B) (LessThan TV BV)

-> (Borrow C)

2. [And (Digit T) (Part-of T C) (First T C)

(Digit B) (Part-of B C) (Middle B C)

(Ordered C T B) (Adjacent C TB)

(Value-of TV T) (Value-of BV B)

(Less-Than-or-Equal BV TV)

-> (Diff C)

Diff(c) AND

1. [And (Digit T) (Part-of T C) (First T C)

(Digit B) (Part-of B C) (Middle B C)

(Cell A) (Part-of A C) (Last A C)

(Ordered C T B) (Adjacent C T B) (Ordered C BA)

(Value-of TV T) (Value-of BV B)

(AbsoluteDifference TV BV AV)

-> (Write AV A)

Table 4.2. Part of the problem representation for 57�9, and part of a sub-
traction procedure, both using Sierra’s representation from (VanLehn 1990,
table 3.8 and 3.10).

The impasse-repair process
In addition to the learner, the other component of Sierra is the solver. This part of
the model applies the learned rules to specific problems. Young & O’Shea built their
rulebases in such a way as to ensure that the condition patterns would be appropriate
for all situations after conflict resolution. Building on the work of Brown & VanLehn
(1980), Sierra incorporates the notion of an impasse. For example, when no single rule is
uniquely specified, and impasse is said to have occurred, and Sierra repairs the impasse
with a number of local modifications to the solver’s state. That particular case, where
more than one rule matches, is an instance of a decision impasse, and appears to be just
another kind of conflict resolution. In fact VanLehn suggests that there are three kinds of
impasse:

1. Decision, when a decision is needed, but cannot be made.

2. Reference, for an object in a pattern that is not uniquely specified.
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1  6  6
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3  6  5 6  5

2  9

3  6

(a)

12 5

(b)
Figure 4.3. The bug always-borrows-left (a), where the student borrows
from the leftmost column. This behaviour is appropriate for two column
problems, such as (b).

3. Primitive, where some primitive operation cannot be carried out—e.g., a student
trying to solve 0-1, but not knowing the answer.

These three kinds of impasse are all that Sierra needs to model children’s errors in
subtraction.

When an impasse occurs, the local problem solver has to make a repair to the current
state so that Sierra can continue with the problem. VanLehn identifies three kinds of
repairs:

1. No-op, which simply skips the offending operation.

2. Barge-on, by relaxing the conditions and then applying the rule.

3. Back-up, by going back and changing a previous action.

Again, just these three kinds of repair are needed to model subtraction and other
problems (VanLehn 1990, p. 43). The “Cartesian product” of repairs and impasses (each
repair applied to each impasse) should be the repair strategies observed in the bug data.
This assumes that repair strategies are not limited to specific impasses, but are general
methods that could be applied to many different impasses. VanLehn (1990, pp. 44–54)
concludes that although there are some biases favouring particular repairs for particular
bugs, repair selection can be approximated by random choice. This suggests a criterion
for deciding whether or not to include new kinds of impasses or repairs: the new impasse
or repair, when multiplied in with the other impasses and repairs should predict plausible
bugs and no implausible bugs. Indeed, VanLehn reports (p. 53) that when impasse-repair
independence was first tested, it predicted 16 new bugs, 7 of which have been found.

As an example of the impasse-repair process, consider the subtraction bug always-
borrows-left, shown in figure 4.3a. As noted above, the skew in the curriculum means
that children are exposed to two column problems before three column problems. Given
the learner’s bias to learn the most specific patterns, it acquires the rule “borrow from the
column that is leftmost and also left-adjacent”. In the context of two column problems
this is an appropriate rule (see figure 4.3b). However, when the child encounters a three
column problem which requires borrowing for the first column, an impasse occurs: there
is no column that is both leftmost and left-adjacent. At this point a local problem solver
takes control from the interpreter and applies a repair. If the barge-on repair is used, one
of the rule’s conditions is relaxed. The bug shown in figure 4.3a results from relaxing the
“left-adjacent” requirement; relaxing “leftmost” clause results in the correct solution for
the subtraction.
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Empirical adequacy
By the Sierra account, bug migration is the result of applying different repairs to the
same impasse. However, the local problem solver may construct a patch to the buggy
procedure. This associates the current repair with the current impasse, so that when the
impasse occurs again, the same repair will be used. In this way both bug migration and
stable bugs are accounted for.

The rule sets produced by Sierra (the predictions of the procedures that children could
learn) are tested for bugs. After each lesson, the results from the learner are passed to
the solver. VanLehn (1990, p. 28) claims that “…many bugs are caused by testing beyond
training…”. Hence, the system is tested not only on the current lesson, but also on harder
problems not taught by the current lesson. Buggy behaviour can also be found on the
current test, especially if the deletion operation has been applied to a rule set (p. 106).
This removes the most recently added goal from a procedure, resulting in procedures that
exhibit bugs such as does-not-carry-over-blank, stutter-add and does-not-carry. Allowing
rules other than the most recent one to be deleted may result in implausible bugs, e.g., a
rule set without the rules for writing down the answer.

The results from the solver are diagnosed as buggy or not by passing them to an
automated diagnosis tool called Debuggy (Burton 1982). The overlap between observed
bugs and predicted bugs is the criterion by which Sierra is evaluated. It may be that
Sierra predicts more bugs than have been observed. This is not a problem providing that
the unobserved bugs are not implausible (star bugs). VanLehn comments (p. 19):

When Sierra generates a star bug, it is missing some kind of constraint. Star
bugs indicate that the theory needs revision. So avoiding the generation of
star bugs is just as important as generating observed bugs.

In the Southbay study of 1147 test solutions, 75 individual bugs were observed. Of
these, Sierra predicted 28, and failed to predict 47. Sierra also predicted 21 plausible bugs
which have not yet been observed, and 7 star bugs. VanLehn argues (p. 200) that when
the simulation catches up with the theory, 39 of the 75 bugs will be predicted (missing
36), with no star bugs and just 21 plausible (but unobserved) new bugs. Most of the
36 bugs that are not predicted are pattern errors (e.g., N�0=0). If Sierra could generate
an impasse when there is a zero to be borrowed from or to, then these bugs could be
explained. However, VanLehn notes that “…empirical quality is not the only measure of
theoretical validity. It must be balanced against explanatory adequacy…” (1990, p. 205).
Young & O’Shea explain pattern errors as being derived from confusions from other
operations (i.e., N+0=0). It is a simple matter to write a production rule with a condition
to capture such pattern errors. VanLehn is critical of this method, and demands an
explanation of why such errors only occur in the context of zero and not other numbers.
“If the model is too easily tailored, then it is the theorist and not the theory that is doing
the explaining” (VanLehn 1990, p. 204).

4.2.4 Summary
The systematic mistakes made by children solving arithmetic problems suggests that
production systems should be used as a model. Young & O’Shea (1981) built such a model
for subtraction, and demonstrated that errors could be modelled by small perturbations
to the rule set for correct subtraction. The modular nature of the system also suggests that
learning could be modelled by adding more rules to the rulebase. However, the Young
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& O’Shea model did not account for learning.
Repair theory (Brown & VanLehn 1980) suggests that buggy core procedures cause

impasses which are repaired from a set of independent repair heuristics. This princi-
ple avoids Young & O’Shea’s arbitrarily hand-coded malrules, and can also account for
bug migration. In fact repair theory predicted bug migration before it was found (Van-
Lehn 1983; VanLehn 1981). Sierra theory (VanLehn 1990) developed from repair theory,
and includes a learning component. Buggy rules are induced from a skewed curriculum
and then interpreted by a problem solver which detects and repairs impasses. The con-
straints on the theory are argued for with evidence from psychology, and ensure that the
learning task is not only tractable, but also fits the bug data rather well.

The difference between core procedure bugs and impasses is that the latter are de-
tectable by the person following the procedure. However, VanLehn (1990) notes that
the existence of impasses is an empirical issue: ACT* (J. R. Anderson 1983) doesn’t re-
quire impasses, but Soar (Laird, Newell & Rosenbloom 1986) does. A discussion of the
importance of impasses and the relationship between Soar and Sierra is deferred until
section 5.6.1. Despite the subjective nature of labeling errors as bugs or slips, or as plausi-
ble or implausible, it seems that rule based systems are adequate for modelling children’s
arithmetic.

4.3 Why connectionism?

Sierra theory is a success story of symbolic modelling. Admittedly it is not without some
problems, but it is the most significant existing account of children’s arithmetic and of
faulty rule acquisition in general. Arithmetic looks symbolic and can be modelled with
symbolic systems, so why bother thinking about a connectionist model? There are at least
five observations which suggest that connectionism is worth considering:

1. The construction of a connectionist model of arithmetic is a tough engineering task,
but only by implementation do we fully realize the difficulties faced by connection-
ism and how they might be solved.

2. There is support for the idea that connectionist systems are the appropriate tool for
capturing developmental phenomena.

3. More generally, connectionist system exhibit mind-like properties, such as au-
tomatic generalization and graceful degradation. Connectionist computation is
“brain-style” computation (Rumelhart & McClelland 1986b).

4. Theory and implementation are never as independent as one would wish. Without
an alternative for comparison there is a danger that Sierra is unduly biased by
symbolic AI.

5. Connectionism is changing our understanding of notions like “symbol”.

Chapter 5 gives details on the construction of the connectionist model of multicolumn
arithmetic. This section expands on the remaining (strongly interrelated) points.

4.3.1 Development
There is a growing body of research applying connectionism to problems in develop-
mental psychology. Examples include general treatments of developmental phenomena,

79



such as stages of development (Shultz 1991), and models for: balance scale (Shultz &
Schmidt 1991; McClelland 1990); seriation (Mareschal & Shultz 1993); English verb mor-
phology (Plunkett & Sinha 1991; Rumelhart & McClelland 1986a); and concept formation
and vocabulary growth (Plunkett & Sinha 1991). In addition there are a number of
models which look at the importance of development in terms of constraints which help
the learner (most notably Elman 1991, 1989a). Some authors assert that “…PDP models
provide a superior account of developmental phenomena than that offered by cognitivist
(symbolic) computational theories” (Plunkett & Sinha 1991, p. 1). Given this interest in
development, it is natural that connectionism should be applied to arithmetic skills.

It is worth briefly looking at a couple of these models to appreciate the connectionist
approach to development. Shultz (1991) comments that the vast majority of developmen-
tal studies have focussed on what has developed rather than on how transitions occur. For
example, four stages have been identified for the balance scale task. In these experiments
the subject (usually a child) is presented with a beam balance. Various weights are placed
at various distances from the fulcrum. Typically the subject is asked to judge which side
of the balance will go down when a support is removed. In the first stage the subject
uses weight alone to decide how the scale balances. Later, distance from the fulcrum
is correctly used, but only when the weights are equal. Stage three is characterized by
the correct use of weight and distance in most instances, but confusions occur when one
side has the greater weight and the other side has the greater distance. Finally, the stage
four subject multiplies distance by weight and compares each side’s product to find the
answer.

As a starting point to understanding the transitions between the stages, Shultz iden-
tified a set of essential features of stages based on a previous analysis of Piaget’s work.
These features included notions of qualitative change, stage ordering, and denied any
abruptness in transitions. To elaborate, changes between stages seem to involve a qual-
itative, and not quantitative, change. Transition is “…not simply a matter of adding
more information, but rather the emergence of a substantially different way of processing
information” (Shultz 1991, p. 105). Stages also tend to be acquired in a particular order,
although stage skipping and regression are occasionally observed. The transition from
one stage to another is more gradual than abrupt. That is, signs of stagen+1 performance
are present during stage n, and perfection at stage n + 1 is not achieved until the end of
stage n + 1.

Shultz listed four ways in which stage development can occur in connectionist net-
works.

1. Hidden unit herding. For multilayered networks (e.g., those trained with backpropa-
gation), each hidden unit does not select a unique role early in learning. Rather, all
the hidden units move to reduce the current largest error (Fahlman & Lebiere 1990).
Eventually hidden unit responsibilities are sorted out, but in the intervening time
stages can be observed. An example of this occurs in the learning of past tenses
(Rumelhart & McClelland 1986a; Plunkett & Marchman 1990; Marchman 1992).

2. Over generalization. Hidden unit herding is one form of over generalization, but a
network without hidden units can also over-generalize. An initial period of over
generalization could be seen as one stage, with later stages occurring as the network
learned the fine distinctions in the training set.

3. Training bias. As seen in chapters 2 and 3, networks are sensitive to problem
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frequency. By manipulating the training environment, networks can be made to
exhibit stages.

4. Hidden unit recruitment. Construction algorithm, such as cascade correlation (Fahlman
& Lebiere 1990; Fahlman 1991), incrementally install new hidden units to reduce
error. These kinds of networks are not pursued further here, but Shultz notes that
of 24 hidden units recruited in his model of the balance scale task, 13 corresponded
to stage progressions.

These kinds of connectionist stage transitions also have other properties. For exam-
ple, qualitative changes in behaviour are observed, although the weights of the networks
only go through small quantitative changes. It is noted, though, that whether a change
is quantitative or qualitative often depends on how closely it is looked at. Likewise, the
grain size of a particular model will determine the degree to which changes are more or
less qualitative. In connectionist models it is also found that stage transitions are tenta-
tive at first, with the network bobbing between stages before committing itself. These
behaviours are found in both the cascade correlation (Shultz & Schmidt 1991) and the
backpropagation (McClelland 1990) models of the balance scale task, and the model of
seriation (Mareschal & Shultz 1993). The conclusion drawn is that “…connectionist mod-
elling of stages is so far quite consistent with the major regularities in the psychological
literature on cognitive development” (Shultz 1991, p. 109).

Elman (1991) has looked at the significance of certain kinds of development for the
learner. Elman notes that if a child is given just positive examples of some data, then
only a regular grammar can be learned. However, natural language appears to belong
to a more complex class of grammars. Given that children do learn language, the usual
assumption is that there is something innate which constrains the learner to allow it to
learn natural language. Elman uses the fact that the learner develops as a constraint
which enables it to acquire a complex grammar. In one experiment, a network’s memory
was allowed to grow over time. Specifically, a simple recurrent network (see figure 4.4)
had its memory “blanked” every third or fourth word. This was done by resetting
the context layer every third or fourth input. The memory span was increased over
time by blanking less often. The network was trained on a large, complex grammar
which included number agreement, use of direct and optional arguments to verbs, and
sentence embedding. Previously it had been established that a standard simple recurrent
network could not learn this grammar. However, by starting with a small memory span
and gradually increasing it, the grammar could be learned. The network’s memory
limitations advantageously constrained what could be learned, in effect reducing the
size of the solution space. That is “…they [the memory limitations] act as a filter on
the input, and focus learning on just that subset of facts which lay the foundations for
future success” (Elman 1991, p. 8). This method only applies in structured environments,
in which fragments of the problem are useful in solving the whole problem. These
conditions are not met when learning a random set of facts. But Elman comments: “In
practice, the world is not a random place, and the sorts of things children have to learn
about typically contain a great deal of structure” (1991, p. 9).

Returning to arithmetic, it seems that the symbolic accounts have mainly been applied
to the capture of the end-result of learning. Hennessy (1990, p. 175) pin-points the
problem:

While the production-system framework has yielded a number of useful char-
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Figure 4.4. The simple recurrent network used by Elman (1991). Each word
in the lexicon is represented as a 26 bit vector. The network learns to re-
encode the input into 10 units. A sentence is fed one word at a time to the
network.The task is to predict the next word in the sentence. At each time
step the hidden units are activated and copied back to the context layer.
Hence, the context layer acts as a memory of the network’s previous state.
As words are fed in, the hidden layer uses the current word and the context
to build up a representation of the sentence.

acterisations of children’s procedural skills, it has failed so far as an attempt to
model the process involved in development. Its focus is on describing what is
learned—the endstate of a learning process or a snapshot view—rather than
on how malrules are actually generated.

This applies to Sierra, where the learner takes a lesson and a rulebase, and returns a
number of updated rulebases that are consistent with the lesson. There is no consideration
of how the new rules are incorporated into the solver, or the effects this has on the
system’s performance. VanLehn is developing a theory of impasse-driven learning, but
as discussed in section 5.6.1, this is not yet fully specified. An inescapable aspect of
connectionism is the gradual nature of learning. There does not have to be “a moment”
when learning “happens”, and hence the snapshot problem of learning in the Young &
O’Shea and the VanLehn models is side-stepped (Bates & Elman 1992, p. 14).

In summary, connectionism looks promising for understanding aspects of develop-
ment. As a metaphor, connectionism does seem better suited to account for development.
Bates & Elman (1992) list the features of symbolic AI which they believe has hindered
the understanding of development: discrete representations, absolute rules, learning as
programming, and the hardware/software distinction (which places few constraints on
what can be learned). These points are contrasted with connectionism’s distributed rep-
resentations, graded rules, learning by structural change, and software as hardware (the
network’s knowledge is defined by the structure of the network). To this list, Bates &
Elman add that the non-linear dynamics of connectionism can make networks behave in
unexpected ways, producing “truly novel outputs”. Connectionism does seem to have
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all the right properties for capturing development, at least as a metaphor. Although the
metaphor of production systems is attractive for modelling the stages reached in develop-
ment (e.g., as accumulating rules) connectionist models provide insight to the transitions
between stages.

The examples above have demonstrated that connectionism is useful in understanding
development in a number of domains. It seems reasonable to suppose that a connectionist
treatment could do the same for arithmetic.

4.3.2 Implementation and theory
VanLehn built Sierra as a variant form of a production system. On making this decision
he comments (1990, p. 69):

If one had to choose between production systems and connection systems
as a representation language for knowledge about subtraction, then produc-
tion systems seem much more plausible. Indeed it is not easy to see how a
connection system could possibly generate the kind of extended, sequential
problem-solving behaviour that characterizes students solving subtraction
problems.

It is hard to disagree with VanLehn here. Much of this chapter has outlined the benefits of
production system models for arithmetic, and they do indeed appear to be more plausible.
However, at least one reason why production systems seem better suited is because
there have been few connectionist models of anything as complicated as arithmetic. If
it were easy to see how networks can generate “extended, sequential problem-solving
behaviour”, then perhaps VanLehnwould not opt for production systems so quickly. This
seems to be borne out by J. R. Anderson’s comment that connectionist systems “…have
been applied to such a small range of tasks that they are totally vague on the issue of
control of cognition…in which the precision of productions systems is most exact” (1983,
note 2, p. 307).

This section looks at the consequences of selecting a particular representation lan-
guage, and concludes that a theory can be unduly restricted by the language. If the goal is
to model a phenomenon with a virtual machine, then although symbolic AI has proved
to be useful, there is no decisive reason to cling to our current understanding of symbolic
representation when designing the virtual machine. Section 4.3.3 demonstrates that there
are other (connectionist) structures which can be considered as “symbols”. These new
structures and new styles of processing provide a different way to think about problems,
and it is suggested that models of arithmetic will benefit from such ideas.

In selecting production systems, one is typically forced to build models that rely on
the methods of symbolic AI. Rules, frames, plans, searching, and so on, have a role to
play, but “the space of computational possibilities has hardly been entered” (Boden 1988,
p. 260). This leaves the following open question: what kinds of computations are going
to be useful in modelling the mind? VanLehn has placed his bet on symbolic AI, and this
has no doubt influenced the development of his theory of arithmetic. But as Pylyshyn
(1984, p. xvi) states:

We cannot accept an operation as basic just because it is generally available
on conventional computers. The operations built into production-model com-
puters were chosen for reasons of economics, whereas the operations available
to the mind are to be discovered empirically.
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By modelling with an operation available on a conventional computer there is a risk of
over- or under-estimating that operation’s importance. In the worst case the model will
incorporate highly improbable mechanisms, such as demanding a processor which is
much faster than the human information processor. Another way of looking at this is to
say that there is a danger of building “cognitive wheels”. A cognitive wheel is:

Any design proposal in cognitive theory…that is profoundly unbiological,
however wizardly and elegant it is as a bit of technology.

(Dennett 1984, p. 147)

As Clark (1985, 1986) notes, although the mind is treated as a black box system, we at
least know that it is a “naturally occurring back box”. Hence, a biological metaphor is
suggested, in which it is insisted that cognitive science “be concerned with the develop-
ment and testing of only such computational mechanisms as seem plausible in the light of
whatever biological constraints may be expected to govern emerging natural structures”
(Clark 1986, p. 47). Of course, these constraints are not detailed.

Logically there is no reason why nature could not have evolved a conventional com-
puting architecture, in which case symbolic models would capture human performance
exactly (Clark 1987a, 1989). In fact, some kind of higher-level “programming” language
seems essential. As J. R. Anderson (1983, p. 3) notes:

…it is totally implausible that we have evolved special facilities or “organs”
for mathematics, chess, computer programming, or sculpture. People become
expert at activities for which there was no possibility of anticipation in our
evolutionary history…

However, given the kludgey way in which evolution constructs solutions (Clark 1987b), it
seems unlikely that the symbolic architecture would be just that one which we use today.

Connectionism cannot claim to be empirically discovering the “operations available
to the mind”, and is it just as capable of producing cognitive wheels as symbolic AI. How-
ever it is clear that connectionism has changed the way we think about representational
issues (discussed further in the next section). For example, given that connectionism is
seen as being most applicable to the low-level processes, the following quotation suggests
that it will also be essential in understanding the higher-level processes:

Whatever the basic principles of language representation, they are not likely
to be utterly unrelated to the way or ways that the nervous system generates
visual representations or auditory representations, or represents spatial maps
or motor planning.

(Churchland & Sejnowski 1989, p. 42)

For “language representation” read any of your favourite higher-level functions. Al-
though these issues are often dismissed as just implementational detail, they can have a
profound effect on the models begin considered. If it turns out that some mechanism,
X, is a very cheap computation, it could be used frequently. If X were expensive, then it
would probably be used less often. So it seems that neither connectionism nor symbolic
AI alone can expect to explain cognition: there is a sense in which all modelling involves
forcing a phenomenon into the representation language you use. Some of the phenomena
will fit naturally, and other aspects will not.
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There seems no easy way to detect “unlikely mechanisms”, and it is often only with
hindsight that specific mechanisms may be declared as begin misguided. One possi-
ble example is any mechanism requiring centralized control. Connectionist research
and neuroscience has suggested that control is distributed in the brain (Rumelhart &
McClelland 1986b, pp. 134–135). A good candidate for a mechanism that is biased by
a technology can be found in repair theory. In describing the impasse-repair process,
Brown & VanLehn (1980) comment: “When a constraint or precondition gets violated the
student, unlike a typical computer program, is not apt to just quit” (p. 381). What Brown
& VanLehn have in mind is an analogy to the computer’s error handling mechanism.
This is made explicit by VanLehn (1990):

When computers reach an impasse, they do not just turn themselves off…Instead
they start executing an error-handling routine instead of the main program.
Similarly when people are executing a procedure and reach an impasse,
they…handle the impasse in some fashion (p. 41).

The idea is that certain errors are detectable in both human and machine, and once
detected something can be done about the error. As discussed in section 4.2, this way
of thinking has been successful in modelling arithmetic. However, the analogy breaks
down for connectionism. The notion of an impasse is ill-defined for networks; networks
will continue to produce output whenever they are given input. Thanks to properties
such as similarity-based processing and automatic generalization, networks never “get
stuck”, unable to continue processing. This throws a whole new light on the impasse-
repair mechanism: perhaps networks can automatically repair undefined situations just
by virtue of having the right kind of architecture to start with—being a connectionist
network, rather than a production system. All this depends, of course, on what networks
actually do (chapter 5), and on the psychological importance of impasses (discussed in
section 5.6.1).

The point to note here is simply that particular technologies suggest certain kinds of
models and theories, and other technologies can force different interpretations. Despite
his attempt to isolate his theory from his model, VanLehn concedes that at least one part of
his argument “…relies on concepts and distinctions from traditional serial computer sci-
ence…” (VanLehn 1990, p. 212). He adds: “…but those distinctions are rapidly changing
as parallel computer science, especially connectionism, develops”.

4.3.3 What is a symbol, anyway?
Even though an explanation of some cognitive skills may currently be best suited to the
language of classical AI (i.e., operations on symbols), the nature of those symbols and
operations are subject to revision. For example,

…our ideas about what it means to ‘operate on a symbol’ are still heavily
influenced by conventional AI implementations in which a symbol is a discrete
internal state, manipulable (copyable, moveable) by a processor.

(Clark 1987a, p. 12)

It is usually assumed that the symbols manipulated by production systems are the same
kind of symbols manipulated by the mind. But there are other ways to look at symbols.
An example is the reduced descriptions described by Pollack (1989b). Recursive auto-
associate memory (RAAM) is based on Elman’s simple recurrent network architecture
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Figure 4.5. Recursive auto-associative memory (sequential version).

(used in figure 4.4). Items in a structure (words in a sentence, perhaps) can be individually
compressed into the hidden layer of the network (see figure 4.5). This compression
includes the representation in the hidden layer from the previous time step, hence building
up a fixed-width representation for the whole sequence. The network auto-associates the
input to the output, thus ensuring that the elements in the sequence can be reconstructed
from their compact representation. RAAM is not used to save memory by compaction;
the usefulness lies in the representation’s manipulative properties:

They combine aspects of several disparate representations. Like feature-
vectors they are fixed-width, similarity based, and their content is easily
accessible. Like symbols, they combine only in syntactically well-formed
ways. Like symbol-structures, they have constituency and compositionality.
And, like pointers, they refer to larger symbol structures which can be effi-
ciently retrieved. But, unlike feature-vectors, they compose. Unlike symbols,
they can be compared. Unlike symbol-structures, they are fixed in size. And,
unlike pointers, they have content.

Pollack (1989a, p. 529/530)

Pollack (1989b) has demonstrated that the RAAM has some form of generality, and is
not simply memorising sequences. Further, these reduced descriptions have been used
for inferencing. Pollack (1989a) describes training an associative network to transform
reduced descriptions of structures like (LOVES X Y) into (LOVES Y X). That is, a simple
network can embody the rule “if (LOVES X Y) then (LOVES Y X)”. This kind of infer-
encing involves variable binding and sequential list chaining in classical AI. Yet for this
network it is no more effort than an association, with an enhanced risk of being the wrong
association. Chalmers (1990) reports using the same methods to transform active sen-
tences into passive form, and argues that this form of computation (“holistic associative
inferencing”) is something that is new, and not available to classical AI.

This notion of representations having special properties is very similar to J. R. An-
derson’s (1983) notion of “salient properties.” ACT* contains three distinct data types:
temporal strings, spatial images and abstract propositions. Each data type has a set of
salient properties associated with it. The salient properties of any data type determine
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which primitive operations are available. Temporal strings, for example, are similar to
Lisp lists, but have a salient property of allowing order to be judged quickly: it is easier
to say that March is before June, than it is to retrieve the months in between. In this way,
J. R. Anderson is attempting to follow Pylyshyn and empirically discover the operations
available to the mind. It will be interesting to see if any of the salient properties suggested
by J. R. Anderson are available (“for free”) from connectionist representations.

The conclusion here is that connectionism is changing the way we think about repre-
sentation. It has some surprising properties, and it may be the case that connectionism
can produce some surprises in other domains (i.e., arithmetic). It is not just connection-
ism that can revise representation; ideas are also flowing in from areas such as genetic
algorithms (Koza 1992) and dynamic systems (van Gelder 1992).

4.3.4 Other symbolic machine learning approaches
Another approach to the problems raised above would be to consider the large number
of symbolic machine learning techniques that have been developed (e.g., see Thorn-
ton 1992b; Michalski, Carbonell & Mitchell 1983, 1986).

Within the production system framework there are number of learning methods to
choose from (Klahr 1992; Neches et al. 1987). For example there is nothing “snapshot”
about the production strengthening used in ACT* (J. R. Anderson 1983, pp. 249–255). The
numeric strength assigned to an ACT* production determines the amount of activation the
production receives during pattern matching. Typically, the strength is increased every
time the production is fired, and reduced by some fixed percentage when the production
is used but the system is subsequently punished for producing the wrong behaviour. It
is assumed that the speed and probability of rule application will depend on the strength
of a rule (J. R. Anderson 1993, p. 52).

In the ACT* framework the strengthening mechanism would be the last stage of
the learning process. Initially it is assumed that a student’s performance is s result
of the application of domain-independent rules to a declarative description of the task
(a description possibly extracted from worked examples). Next follows the process of
knowledge compilation, in which a composition process merges pairs of rules that fire
in sequence, and a proceduralization process embeds declarative knowledge within the
production. In addition, productions are subject to generalization (by replacing constants
with variables) and discrimination (to reduce the applicability of a rule). As generalization
and discrimination are inductive mechanisms, they will occasionally produce erroneous
rules. This is where the strength of a rule comes into play. Compiled, uncompiled,
tuned and untuned rules all coexist in ACT*, and the strength of any production can
determine which version of a production fires. With these processes, ACT* can replicate
various phenomena (e.g., aspects of language acquisition, J. R. Anderson 1983, chapter 7),
including the kinds of tentative stage transitions that Shultz (1991) describes. (However,
see Clark 1993, pp. 81–86, for problems with knowledge compilation).

Apart from production systems, there are other symbolic machine learning techniques
that could be applied to this domain. A relevant example is the planning-based system
of Jones & VanLehn (1991) which models children’s acquisition of addition strategies (cf.
Siegler & Shrager 1984).

Children first learn to add two numbers using the SUM strategy: each addend is
represented by raising the appropriate number of fingers on each hand. The child then
counts the raised fingers to find the total. Over time, children switch to the more efficient
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MIN strategy. Here, the child starts with the larger of the two addends, and counts on by
the smaller addend. GIPS (general inductive problem solver) models this SUM to MIN
transition.

Briefly, GIPS uses means-end analysis, with a set of operators (e.g., to raise a finger, or
to zero a counter) which contain preconditions, add conditions and delete conditions. The
preconditions are used to set up subgoals when the operation fails. Each operator also
has a “selection concept” and an “execution concept” associated with it. The selection
concept (set of predicates) determine when an operator should be selected, and the
execution concept determines when it is actually useful to carry out the operation. The
match between these concepts and the current state are used to probabilistically select an
operator (so any of the operators could, in principle, apply at any moment). The domain
itself is represented by relations between objects, such as numbers, hands and “in the
head” counters.

GIPS is initially programmed to carry out the SUM strategy. The “left-addend-
represented” operator raises the fingers of the left hand to represent the first addend.
The system raises each finger in turn and counts until the counter reaches the value of the
addend. The counter is then reset, and the “right-addend-represented” operator is used.
Finally, all of the fingers are counted to determine the answer.

The system learns by updating the selection and execution concepts. After processing
a number of examples, the system begins to encode various regularities. One such
regularity is that the number of raised fingers is always equal to the addend being
represented. Eventually these regularities become so strong that the system allows the
“left-addend-represented” operator to succeed with the goal value of the counter equal
to the first addend without raising any fingers (remember, the system is probabilistic).
The system successfully solves problems using this modified operator, so it deletes all the
conditions on the operator. At this point the system has shifted from the SUM strategy to
what Jones & VanLehn call the “shortcut SUM” strategy. This is a step towards the MIN
strategy.

As Jones & VanLehn (1993) comment, it appears that the “…intricate structural dif-
ferences between the SUM and MIN strategies make it difficult, if not impossible, for
standard, symbol-level machine-learning algorithms to model the transition.” Yet Jones
& VanLehn show that GIPS, a symbol-level learning system, successfully models the
transition using a probabilistic problem solver.

Both ACT* and GIPS offer symbolic approaches that could usefully be adapted to
model multicolumn multiplication. Learning is inherent in both systems, and some of
that learning is gradual. Symbolic machine learning is just as useful for studying this
domain as connectionism is. However, this study focuses on a purely connectionist
machine learning account.

4.3.5 Comments
Connectionist networks exhibit many mind-like properties. Although certain cognitive
functions may best be explained at the level associated with classical AI, there seems
to be a case for investigating these processes from a connectionist point of view. As
J. R. Anderson (1983, p. 41) notes: “Using a computer analogy, the cognitive system is like
a rich and complex programming language with many special hardwired features.” The
ideas about representation and styles of processing being developed by connectionism
may well help identify the “special hardwired features.” If hybrid systems are developed
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in which parts of a production systems are implemented in connectionist technology
(Touretzky & Hinton 1988; Stark 1992) there are likely to be aspects of the representation
language (the salient features) which could be exploited by the production system.

It seems that connectionism may be well suited to capturing developmental phenom-
ena in general. For arithmetic in particular, it could be that some of the assumptions
made by VanLehn (1990) and Young & O’Shea (1981) may be changed when viewed
from a connectionist perspective. This is not to suggest that connectionism necessarily
offers a “better” account of cognition, or that production system models can be ignored.
Rather, there is some promise in looking at arithmetic from a different—in this case,
connectionist—point of view. The “true” story is much more likely to be hybrid than
purely connectionist or purely symbolic.

Having established these points, and having looked at the kinds of bugs and models
that surround children’s arithmetic, a connectionist model can now be described.
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CHAPTER 5

A Connectionist Model
of Multicolumn Arithmetic

Before detailing the connectionist network used to model arithmetic, this chapter first
outlines the known features of arithmetic that constrain the model. The architecture, input
and output representations and training environment are then described. The results of
simulations—the errors the network makes when solving multicolumn problems—are
presented, and the network’s behaviour is analysed. Finally there is a discussion of how
the network relates to Sierra, and how notions like bug migration and impasses can be
accommodated.

5.1 Constraints on the model

Few people do long multiplication “in the head”, preferring instead to use an external
representation on paper. This kind of mundane observation needs to be incorporated
into the design of any model in order to constrain it. These constraints are listed in this
section.

One thing which is not constrained is the grain size of the model, yet this is often what
makes or breaks a model. Choosing the wrong set of operators can mean that the model
apparently fails in its task. An example of this is VanLehn’s decision to include “leftmost
column” as part of the problem representation; without it Sierra would not be able to
account for the bug always-borrows-left (figure 4.3). Of course, empirical validity is not
the only measure of a model (as discussed on page 78), but without a reasonable fit to
the data it becomes difficult to judge the explanatory power of a model. These issues are
taken up throughout this chapter.

5.1.1 What we know about multicolumn arithmetic
Taking assumptions and observations from VanLehn (1990) and Young & O’Shea (1981),
it is possible to present a list of some of the things that are known about arithmetic:

Children don’t understand it. This point was discussed at length in section 4.2.3, concluding
that multicolumn arithmetic is best described in terms of a procedural (syntax-only) set
of skills.

It takes time. Many connectionist models solve whole problems in a single step: input is
presented, and an output is computed. Multicolumn arithmetic, however, is characterized
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by its sequential nature. A network in this domain must be able to produce a series of
actions even when the external input does not change.

Problems vary in length. There is no point in building a network which can only solve
problems containing a limited number of digits. The power of multicolumn arithmetic
stems from the fact that a simple set of arithmetic procedures can be applied to problems
of unlimited length. This point and the previous one are the main reasons for selecting a
recurrent network as the architecture of the model.

There are eye movements. Suppes et al. (1983) measured the eye movements made by
subjects when solving multicolumn arithmetic problems. It was showed that subjects tend
to follow the normative algorithms taught in schools. That is, for addition the eye focusses
at the top of the page, scans down the column, then jumps to the start of the next column,
and so on. This information was used by Suppes et al. to build a model of eye movements
(discussed later). Eye movements are not accounted for in the symbolic models of buggy
arithmetic. In the Young & O’Shea account the operation ReadMandSdeposits the digits of
the current column into the working memory; the operations ShiftLeft moves attention
to the next column. Hence eye movements are below the level of detail addressed by the
current symbolic accounts.

You don’t always mark the page. The subject is not marking the page when focussing on a
digit, or recalling the product of a multiplication. Again this can be viewed as a question
of grain size: It is possible to build a model in which each operation is quite complex,
resulting in a mark being made on the page, although no existing models suggest such a
coarse level of detail. Given the serial scanning nature of arithmetic, the model described
in this chapter includes a simple form of eye movement, whereby a focus of attention is
shifted digit by digit over the problem. Each step does not necessarily mark the page,
which means that the network will have to rely on some kind of internal memory to know
what to do when the input does not change.

Arithmetic is learned in steps. Many connectionist networks are trained by presenting the
system with a broad set of instances from a target mapping. As described in section 4.2.3
there is a definite curriculum for arithmetic. This means the training set for the model will
be “staged”. First the network will be trained on simple addition problems involving just
two digits with no carrying. Then, two column problems are introduced and trained along
with the previously learned problems (to avoid catastrophic interference; see McCloskey
& Cohen 1989; Ratcliff 1990; McRae & Hetherington 1993). It is not the case that staged
learning makes this problem easier to learn (as it did for Elman 1991). Rather, the network
described below will learn the training set three or four times faster when the problems
are presented in a single training set. The cost of this speed-up is that the bugs exhibited
by such a network include such unlikely actions as carrying on simple problems like
1+1. It could be argued that, early in learning, children solving 1+1 would not have the
concept of carrying, hence such errors are never going to be observed. So to avoid such
star bugs, and to mimic the training environment of children, the input to the network is
staged.

Learning is by example, not verbal recipes. This was discussed in section 4.2.3. This is
convenient for a connectionist model because it means the system can be trained from
actual example problems, rather than trying to get a network to (somehow) interpret an
encoding of the procedures for arithmetic.
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There are bugs and slips. Run time slips, such as 3�4=8, were considered in part I. Here
the focus is on procedural misconceptions, where mistakes are not due to “faulty recall”,
but result from mislearning. To isolate the procedural aspects of arithmetic, much of
the processing involved in solving a problem is done outside the network. External
activities include keeping track of the current focus of attention, computing products,
and keeping running totals. Training a network to output the right steps in a procedure
(“multiply now”, “remember this number”) is hard enough without all the additional
details of register storage, and remembering the multiplication facts. The result is a
connectionist finite state machine. Embedding the facts network from chapter 3 inside
this state machine would be an interesting project, but it is not taken up here.

Bugs occur during testing. Many bugs show themselves when the subject attempts to
solve previously unseen problems (see section 4.2.3). After training a network on a
set of problems, any over-generalization can be assessed by presenting a test set of
slightly harder problems—namely the next set of problems in the curriculum sequence.
In some circumstances it may be possible to find a training set that leads to near-perfect
generalization. With this in mind VanLehn (1991b) discusses the notion of a pseudo-
student—a program that will take a textbook lesson sequence and return a list of the
misconceptions students are likely to acquire from that particular set of problems. Using
this knowledge it will be possible to adjust the textbook’s lessons to reduce the likelihood
of students acquiring misconceptions.

Many of the assumptions of the model are based around the assumptions of VanLehn’s
theory. Others may disagree with these assumptions, for example about learning being
from examples only. However, to give this domain a connectionist treatment, it seems
sensible to start from the assumptions of an established theory, rather than attempt to
reconstruct a new one.

5.1.2 What we don’t know about multicolumn arithmetic
The above points help to narrow down the design of a model, but there are a number
of fundamental questions which throw the design space wide open. Three particular
unknowns are:

What is read. Although the eyes move this does not mean we know what is actually read
from the page. Do subjects just look at single digits, or is the context of the digit, such
as the space around it, important? Reading arithmetic problems is nothing like reading
text: Suppes (1990) found that two, quite different models were needed to capture eye
movements in these two domains.

What is done. In terms of virtual machines, what are the operations carried out on an
arithmetic problem? This is not just a problem of getting the right grain size, but of
getting an appropriate set of operations, as discussed at the start of this section. Given
that there are many instruction sets that can perform a given task, what are the criteria
for favouring one over another? With enough degrees of freedom it is always possible to
produce a fit to the data, so empirical adequacy is only part of the story.

How we navigate problems. What kind of cues does a subject use when solving a problem?
When looking for the top of a column, does the eye scan up until it finds a large enough
area of space? Or is there some kind of peripheral information allowing a fast, ballistic
movement?
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Figure 5.1. Transition network for long addition based on routines by Suppes
et al. (1983). Digits in the problem are represented in a coordinate system
(row,column), relative to a top-right origin (1,1). A movement is denoted (�
row,� column). Subprocedures are used for vertically scanning a column.

These unknowns are mostly ignored in all the accounts of arithmetic malrules to
date. What is missing is a solid understanding of the perceptual processes underlying
our symbolic arithmetic abilities. As Suppes et al. (1983) comment: “Without such a
[perceptual] component we have no way of representing the mental operations a person
actually uses to process the written symbols presented to him” (p. 342). Given the lack of
empirical research in this area, I have used many of the detail from the work of Suppes
et al. to design the connectionist model.

The Suppes et al. model of eye movements
The register machine presented by Suppes et al. (1983) was built to capture eye-fixation
durations and saccade directions for multicolumn addition and subtraction. In particular
the aim was to ensure that eye movements could be correlated to steps in the register
machine. The model’s operations included:

� A stimulus supported register (SS) which contains the element (digit, rule mark,
space) currently being looked at. The SS register is subject to decay when the focus
of attention is moved.

� A nonstimulus-supported register (NSS), which is not subject to decay. This register
is used to accumulate an answer.

� A copy operation allows the contents of SS to be moved to NSS.

� The left- or right-most digit of a register can be written out. For two digit numbers
this obviously means having access to the tens and units of the number.

� Arithmetic facts are supplied by a “lookup” operation.

� Conditional branch points are used—“gotos” which are dependent upon the con-
tents of a register.
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Figure 5.2. Architecture of the model. Outputs from the network drive exter-
nal machinery (ALU) to perform tasks such as addition and multiplication.

� The problem is represented as cells in a grid.

� The focus of attention is directed by an “attend” operation, which is either absolute
(attend to grid position a; b), or relative (shift attention by �a;�b).

Using these elements, Suppes et al. found that a register model could be built in
which the operations correlated with eye activity (figure 5.1). That is, eyes tend to move
when the register machine requires movements (attend), and stay put during other cycles
(copy, lookup, etc.). Of course, eye movements are highly stochastic, and the measures
of correlation that Suppes et al. used are necessarily complex. Despite the success of
the model there are many more aspects to consider—e.g., the use of the grid system of
coordinates, and eye movement velocities.

The basic elements from this model of arithmetic eye movements were used as the
starting point for the connectionist model described in the next section. Although Suppes
et al. did not attempt to model arithmetic malrules, their analysis of of the perceptual
systems should be an important component of any arithmetic model.

5.2 Architecture of the model

Having looked at the origins of the ideas behind the connectionist model, it is now possible
to specify the details. The architecture is shown in figure 5.2. An encoding of the problem
is presented to a recurrent network, which activates a set of 35 hidden units, which in
turn activates an output layer representing actions to be carried out. These actions drive
external mechanisms to update the problem in various ways, such as writing down a
number, moving the focus of attention, or computing a sum or product. To enable the
network to process sequences, the hidden layer is copied to the context layer at each time
step acting as a memory of the previous state.

We can view the problem of learning arithmetic algorithms as learning to be a finite
state machine (FSM). VanLehn (1990) also found it useful to describe long subtraction in
terms of transition networks.

There are plenty of connectionist models that can learn to be FSMs (Rumelhart, Hinton
& Williams 1986; Elman 1988; Servan-Schreiber, Cleeremans & McClelland 1988; Cottrell
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Figure 5.3. Backpropagation through time (BPTT). The shaded area shows a
single network. I(t) is the input at a particular time step, t. H represents a
hidden layer, and O represents an output layer. The training of a recurrent
net is reduced to training a many-layered feed-forward network.

& Tsung 1989; Allen 1990; Williams & Zipser 1989; Fahlman 1991). I chose to use back-
propagation through time (BPTT), as proposed by Rumelhart, Hinton & Williams (1986,
pp. 354–361). BPTT involves stacking-up a copy of a feedforward network for each step in
a sequence, and then “rewinding” at the end of the sequence, backpropagating error to the
very first pattern in the sequence. Although it seems to be an unpopular algorithm, it has
distinct advantages over other candidates: it can learn sequences that simple recurrent
networks find difficult (Maskara & Noetzel 1992); it shows better performance, in terms
of generalization and learning success, that the real-time recurrent learning algorithm
(Zipser 1990); and backpropagation is better understood than more recent constructive
algorithms, such as cascade correlation.

BPTT works by making one copy of the network for each step in the problem. As the
context layer is the hidden layer from the previous time step, it is possible to re-draw a
BPTT network as in figure 5.3. At each step of the forward pass, the activations of all the
layers are recorded. After the last output has been produced, error is backpropagated
down the virtual network in the usual way. In the figure, error is propagated from O(2)
to H(2), allowing error information to be computed from H(2) to H(1). Also, at this point
O(1) contributes the error associated with the output at time step 1. This continues with
H(1) backpropagating error to H(0), and so on. Note that the weights from I(1) and H(0)
to H(1) and O(0), are exactly the same as the weights from I(2) and H(1) to H(2) and
O(1). After the error has been backpropagated to the start of the network, the weights are
updated using the generalized delta rule (Rumelhart, Hinton & Williams 1986).

The BPTT algorithm differs from the use of backpropagation in simple recurrent net-
works (SRNs) because error is preserved across the hidden layers. SRNs (as described
by Elman 1988) have the feed back from the hidden layer to the context layer, but do
not stack up copies of the network. Error is computed after each pattern. When using
a near minimal number of hidden units for a task, SRNs can carry information about

95



T

X

X

P

V

P

S

V

B E

S

T

Figure 5.4. The grammar used by Cleeremans et al. (1988, p. 374). B is
the designated start symbol, and E is the end symbol. Traversing an arc
generates a symbol (B,P,S,T,V,X, or E). An example string is: BTSSSXXVVE

certain contingencies over a number of time steps. That is, SRNs can use knowledge
from previous time steps to influence actions much later in the sequence. “Such infor-
mation is maintained with relative ease if it is relevant at each time step; it tends to get
lost when intervening elements do not depend on it” (Cleeremans, Servan-Schreiber &
McClelland 1988, p. 372). BPTT obviously does not have this problem as the whole time
sequence is drawn out. Preliminary tests identified that the problem of multicolumn
arithmetic, as presented here, requires BPTT. However, SRNs can learn this task, but
only by using many more hidden units than required (Maskara & Noetzel 1992).

Cleeremans et al. (1988) found that recurrent networks of this kind, when trained
on example strings from a finite state grammar, can become perfect recognizers for
that grammar (see also Servan-Schreiber et al. 1988; Servan-Schreiber, Cleeremans &
McClelland 1991; Allen 1988; Elman 1988). A SRN was presented with strings from
an artificial grammar (figure 5.4). At each time step one letter was presented, and the
network’s task was to predict the next letter in the sequence. Given that any node in
the grammar may have a number of successors, it is not possible to correctly predict
the next letter. A particular letter’s successor will depend on the context of what other
letters have been processed—the choice of successor will depend on which node has been
reached in the grammar. The network was trained on 60 000 randomly selected strings
from the grammar. When testing the network any output unit with activation above 0.3
was taken as a prediction of a legal successor. When the actual successor was not one of
the predicted successors, the network was said to have rejected the string. The string is
accepted if only good predictions have been made when a designated terminal symbol
was reached. In a test of 70 000 randomly generated strings, 0.3 per cent happened
to be grammatical. The network accepted all the grammatical strings, and rejected the
others. When the hidden unit activations were analysed, by clustering the hidden vectors
according to their similarity, it was found that the vectors grouped according to nodes in
the grammar. Given that multicolumn arithmetic can be viewed as learning to be a FSM,
it seems that this kind of recurrent network is appropriate for the task.
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Figure 5.5. Problem representation

5.2.1 Input and output representations
Having selected an architecture that is powerful enough to learn arithmetic procedures,
the next step is to specify the input and output representations. Figure 5.5 shows a
general framework for representing long multiplication using a grid. To solve a problem
represented in this way requires three types of operations:

� Attending to particular areas of the problem to read and write digits. To do this the
network moves a “focus of attention” around the grid.

� Computing arithmetic facts, or other useful predicates. The lookup of arithmetic
facts is done externally to the network, and a small number of truth values (e.g., “in
leftmost column?”) are presented as input.

� Controlling the attention of the network, knowing when to write down a digit, etc.
The training set and choice of output operations determines the control strategy.

Three external registers are used to keep track of the network’s progress through
the problem. One register is used to point to the current digit being processed in the
upper-row and another is used to point to the digit in the second row of a problem. These
registers are not necessary for addition, but are for multiplication. The third register is
used to locate the place where the answer should be written. These registers are initialized
to default positions at the start of a problem, and it is the network’s responsibility to update
them by turning on appropriate output units associated with increment operations. When
the network needs to read the upper-row digit, the “jump to the top row” output unit
will be switched on.

There are may other ways that action could be represented without using external
registers. For example, the output layer could be split into an operation-argument pair.
In this case moving the focus of attention would mean switching on the “attend” operator
in the first set of outputs, and switching on some encoding of position in the second set
of units. This style of representation seems more likely to succumb to “memory slips”
by getting the position encoding wrong. Making use of external registers focusses the
model on procedural aspects of the problem—knowing that focus must be moved to the
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Movement Registers
top_next_column (TNC) store_mark (STR)

jump_answer_space (JAS) zero_accumulator (ZAC)

jump_top_row (JTR) next_answer_row (NAR)

left (LFT) next_bottom_column (NBC)

right (RHT) inc_answer_column (IAC)

up (UP_) inc_top_column (ITC)

down (DWN) add_start_position (SAD)

read_carry (RDC) start_multiplication (SMU)

Writing Others
write_units (UNI) add_mark_to_accumulator (ADD)

write_tens (TEN) compute_product (MUL)

mark_zero (MKZ) draw_rule (RUL)

mark_carry (MKC) done (DON)

Table 5.1. Actions that the network can perform (and abbreviations used in
some figures).

top row, but without having to store actual coordinates. Positioning errors can occur,
though, if the network does not increment or reset the counters at the appropriate time.

Twenty-four output actions can be performed (table 5.1). For each operation there is
an associated output unit in the network (a 1-of-24 encoding). This set of operations is
adequate for multiplication and addition, and was used in all the experiments described
below. Variations in the operations, and the effects this has on the model, is a topic for
future investigation.

The top-row, bottom-row and answer registers have increment operations and reset
operations. There is also the notion of a “current focus”: after the network has focused
on a digit in the top row, for example, it can move relative to that position (up, down, left
or right), or read the carry mark if there is one in that cell. All these registers are reset to
appropriate starting positions when the network activates either theadd_start_position
or start_multiplication units at the start of a problem.

As the focus of attention moves around the problem, the contents of the current cell
is read (cf. Suppes et al.’s SS register). The contents may be stored in another register
(NSS) and used in computations. When addition or multiplication is called for, the
calculation uses the current digit in focus and the last stored digit, and places the result
in an accumulator—or adds the result to the accumulator in the case of addition. The
accumulator’s contents is accessed, mostly to write down a digit, by the tens column or
the units field. A special operation (mark_carry) writes the tens part of the accumulator
at an appropriate place relative to the current focus of attention.

Two operations are particular to multiplication. The mark_zero operations simply
writes a zero at the current focus of attention. This is useful for annexing zeros into the
partial product (see figure 4.1 on page 68). After completing the partial product, but
before the addition begins, it is customary to draw a line under the partial product. The
associated operation, draw_rule, does this.

A network has solved a problem when the done output unit is active. At all times the
operation carried out is the one associated with the most active output unit.
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A number of output actions involve “jumping” the focus of attention to certain points
in the problem, such as the top of the column. There are other possibilities: for example,
rather than allowing a top_next_column action, there could be a loop of actions moving
the focus of attention up the page until it reached the top of the column. This would
result in less output actions, but much longer training sequences. Indeed, it is possible to
navigate around a multiplication column with only one register, an accumulator, and the
ability to move up, down, left or right. But not only would the sequences be very long,
this model also runs against introspective accounts of how one solves a multiplication
problem. Exactly how people navigate maths problems is an interesting and open topic
which requires further empirical research.

The input to the network is a vector of 7 bits encoding information about the cell at
the current point of focus, and 2 bits to indicate the task (figure 5.6). The task bits are set
at the start of processing and remain unchanged for the duration of the problem. If the
task is multiplication the first bit is set, otherwise the second bit is set. As the network is
not concerned with the actual numbers in any given problem (remember the calculations
are done externally), the input only has to indicate if the current cell contains a digit, a
rule line or a space. Three bits encode this information. That is, if there is a digit in the
current cell, the sixth input bit is set—there is no encoding of which digit it is. A further
three bits are set when the focus moves to a column that is the rightmost column, or the
leftmost as defined by the second row of the problem, or leftmost as defined by the first
row of the problem. These flags correspond to important points in the problem, such as
when to stop processing, or when to move on to the next multiplier.

The remaining input bit is set when the accumulator exceeds 9 (i.e., when a carry is
needed).

To summarize, the input to the network is an encoding of the current cell of the
problem. The previous hidden layer output, initially all zeros, are also presented as part
of the input. This allows the hidden layer to act as the state of a finite state machine:
next state = f(previous state; external input). The output of the network is an instruction
to move the focus of attention, or perform a calculation or update one of the external
registers.

5.2.2 Training
Learning an algorithm for long multiplication involves learning sequences made up of
the primitives mentioned in the previous section. For example, the problem…

2
� 3
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Task Cell Output Comments
� start_multiplication Look at ‘3’
� Number store_mark Remember the ‘3’
� Number jump_top_row Move to the ‘2’
� Number compute_product Multiply digits
� Number jump_answer Move down
� Space write_units Write ‘6’
� Space done

Table 5.2. An example of a training sequence for 2�3. The last three input
bits, information about leftmost and rightmost columns, are not shown here.

…is represented with the training sequence shown in table 5.2. Seven steps are required
to solve a two digit multiplication which does not involve carrying. Other sequences are
longer: 12�59 is solved with 64 steps.

As the input representation registers information about the presence or absence of a
digit and the state of the accumulator, but not the actual digits in the problem, the training
set need only contain one instance from each kind of arithmetic problem. That is, rather
than training the network on 1�1, 1�2, 1�3, 2�3, 9�1, and so on, the training set only
contains one problem for “one column problems without carrying.” This is because 9�1,
1�1 and 2�3 all produce exactly the same sequence of output vectors, or follow the same
path through a finite state machine.

For the additions 0 + 0 to 999 + 999 there are 40 different sequences that need to
be learned; for 0�0 to 999�999 there are 362 sequences. A subset of 27 problems (10
addition, 17 multiplication) were trained on. The problems were arranged in a curriculum
of increasing difficulty (table 5.3). This problem set was not optimized, and no other
combinations were tried. The problems were selected to conform with the difficulty
sequence found in a school textbook (Howell et al. 1979), and the sequence identified by
Cox (1974, see discussion in appendix A).

One training set was created for each of the problems. The first set just contained
the 9 input-output pairs for 1+1. The second contained the 9 for 1+1, plus the 11 steps
for 1+1+1. In this way, each training set included the previous set. The last training set
contained a total of 1156 training pairs.

The network was trained with a low learning rate (0.01) and no momentum using
backpropagation through time. These parameters were determined by running a number
of networks with various learning rates, momentum rates, tolerances (see below), and
different numbers of hidden units. I selected the combination which learned reliably
(with no local minima) and quickly.

It was found that rather than using 1.0 and 0.0 as target values, learning times were
reduced by using 0.9 and 0.1. This helps by ensuring that the weights do not push the
output activities too far along the sigmoid function, so that the derivative of the activation
function is larger than it would be if the network was trained to 1.0 and 0.0. It is similar
to the sigmoid prime offset used in chapter 3. Sigmoid prime offset could not be used
with this recurrent network because it made the weights “explode”—suddenly reach very
large positive or negative values. The reasons why this happens remains unclear.

A performance measure was used to determine the point at which a network could
solve the problems in the training set. An output vector was classified as “correct” if
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1: 1 + 1 8: 101 + 109 15: 12�5 22: 12�50
2: 1 + 1 + 1 9: 101 + 99 16: 12�9 23: 12�55
3: 11 + 11 10: 101 + 899 17: 1�11 24: 12�59
4: 11 + 1 11: 1�1 18: 11�11 25: 12�90
5: 1 + 9 12: 2�5 19: 1�111 26: 12�95
6: 1 + 19 13: 11�1 20: 12�15 27: 12�99
7: 100 + 100 14: 111�1 21: 12�19 28: 111�11

Table 5.3. Problems used to train the network. The 28th problem was used
for testing the 27th network and was not trained on.

each element of the vector was within a tolerance of the target value. The tolerance
was set at 0.2, meaning that an individual output unit was “correct” if it was �0:2 from
the desired value. Note that this measure was not used in the computation of error
with backpropagation—it just provides a way to monitor the training progress which is
more intuitive that total sum squared error. Performance is the number of correct output
vectors as a percentage of the number of patterns in the training set.

Training on a particular set of problems continued until 100 per cent correct performace
was achieved or 10 000 epochs had passed. Then the next training set was introduced,
and learning continued. In most cases the performance measure stopped the training. In
the cases where 10 000 epochs were reached, it was found that the networks could solve
the problems correctly. A less than 100 per cent correct network can still produce the
correct output sequence because during testing the most active output unit is taken to be
the output of the network.

The training was also “teacher forced”: the network always received the input that
would be expected if it had produced the correct sequence of actions, regardless of the
sequence actually produced. During testing, however, the output from the network
is acted on, not the desired output. Likewise, the actual input that results from these
changes is presented on the next time step, not the expected input.

Given that the training set changes in size, it is easier to report learning times in terms
of the number of input-output pairs processed than in terms of epochs (number of passes
through the training set). One input/output pair constitutes a forward and backward
pass through the network. It took 45 756 input-output patterns to learn 1+1 (5084 epochs),
a further 660 pairs to learn 1+1+1, and a further 265 430 to learn 11+11. The learning times
increase when introducing new concepts (see figure 5.7). A total of 3 857 965 patterns
were needed to learn addition, and 33 271 488 patterns had been processed after the 27th
sequence had been learned.

5.3 Results

The training of a network is not of central importance here. The aim is to see how
the network performs on unseen tasks, and what kinds of mistakes it makes. In this
section results are presented from testing trained networks on multicolumn arithmetic
problems. The testing procedure begins when a problem is presented to the network and
activation propagates through the network. The most active output unit is taken to be
the network’s response. The operation associated with the response if executed—there
is no teacher forcing. This continues until the output is “done”. As demonstrated in the
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Figure 5.7. The learning time required for each training set. Each bar repre-
sents the number of input-output pairs needed to learn a particular training
set in addition to the time required for previous training sets. The taller the
bar, the more difficult the problem. The problem set numbers on the x-axis
refer to the problems in table 5.3.

previous section, learning is not problematic. After training on a particular problem set,
the network correctly solves the problem in the set. Hence testing is only on problems
the network has not encountered before.

First note that there is some generalization. For example, after training on 1+1, the
network can solve 1+1+1 (the next problem in the curriculum), and 1+1+1+1, but no
further. After the third training set has been learned the network can add a row of
unlimited length, tested on a row of 200 digits, with a sum less than ten. This limited
generalization and other generalizations will be discussed in more detail later.

On other problems the network outputs the wrong operation, leading to various kinds
of mistakes. Some of these mistakes are interesting and bug-like. For example, solving
59�12 involves solving 118+590. Although the network can correctly solve the addition
part alone, when presented as part of the multiplication one action (mark_carry) was
skipped, resulting in:

5 9
� 1 2
1 11 8

+ 5 9 0
6 0 8
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This is a surprising result from embedding addition within multiplication, and is
explained in section 5.4. Another interesting and plausible bug comes from testing the
network on a problem it has never seen before:

1 1 1
� 1 1

1 1
+ 1

1 2

In the following example the network correctly multiplies by the first multiplier and then
quits, ignoring the second multiplier. This is the bug quits-after-first-multiplier:

1 2
� 1 5
61 0

The same network behaves differently in other situations:
1 2

� 5 3
8 6

Here the network correctly executes the first multiplications (3�2=6, 3�1=3), but then
adds the 5 to the accumulator (3+5) to get 8. This is an example of the way the network
can mix parts of addition with multiplication.

Of course many of the bugs are highly implausible (star bugs). For example, one
network was set the task 12�90, and wrote all over the page, resulting in:

0 1 2
� 0 9 0

0 0
+ 01 01 8 0
0

In order to asses how well the model accounts for bugs, the following experiment was
carried out. The weights of the network were saved after every training set, resulting
in 27 weight matrices. Then each of the 27 networks was tested by presenting it with
the problem in the next training set—a problem the network was not trained on. The
behaviour of the network was classified, by hand, as being correct, an observed bug, or
an unobserved bug. An unobserved bug is one that has not been recorded for human
subjects, and therefore does not appear in the appendicies. The first column of the top
half of table 5.4 shows the results as a percentage of all the problems solved.

This process was continued by testing each network on the problems in the next two
training sets, and in the next three training sets (columns 2 and 3 of the table).

As can be seen, the model predicts far too many unobserved bugs: around 50–60 per
cent of all behaviour is an observed bug or correct, but at the cost of having to generate
over 40–50 per cent unobserved bugs. The unobserved bugs can be broken down into:
star bugs, which I believe will never be observed in a study of human bugs; plausible
bugs, which do not appear in the appendices, but I believe that they might be observed;
and combination bugs, which can be described by a combination of two bugs, of which at
least one is unobserved but plausible. Examples of these categories are presented below,
taken from all the problems solved by the networks in the experiment (the last column of
table 5.4).
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Bug type +1 +2 +3
Correct 24.00 16.67 14.29
Observed 36.00 35.42 37.14
Unobserved 40.00 47.92 48.57
Totals 100.00 100.00 100.00

Star 32.00 31.25 32.86
Plausible 8.00 10.42 7.14
Combination 0.00 6.25 8.57

Table 5.4. Classification of the behaviour of the model when tested on unseen
problems. Column 1 percentages are from 25 problems, column 2 from 48
problems, and column 3 from 70 problems. The unobserved bugs are broken
down into star, plausible and combination bugs.

Correct behaviour
The networks generalized correctly on a total of 10 problems. Examples include: the
network trained on 1+1 correctly solved 1+1+1; after learning 11+1, 100+100 was solved;
1�1 generalized to 2�5; once 12�59 was learned, the network correctly solved 12�90.

Star bugs
A total of 23 star bugs were found, indicating that there needs to be some additional
constraints on the model. Four of the 23 bugs result from allowing the network to write
anywhere on the page, including the initial problem, and rule-marks. Endless looping
accounts for 5 of 23 bugs. In 3 cases the answer was not recorded—a serious star bug, as
subjects usually write something.

The majority of star bugs (11) were due to the network repeating a large operation,
such as repeating the addition sequence after adding a partial product. This often involves
writing over marks that are already on the page.

Plausible bugs
There were three bugs that seemed plausible. The first occured three times. The network
fails to mark the carry from the tens column, but does for the ones column:

1 0 1
+ 8 9 9

9 01 0

There was a kind of “operation confusion” (2 occurrences), where the first multiplier is
used correctly, but the result of the second multiplication is added to the second multiplier.
An example of this was given on page 103 (12�53).

There was 1 occurrence of a bug in which an answer is repeated, but skipping over the
digits in the last column. In the example, 2�4=8, then the network scans down the second
column, ignoring the numbers, and writing the previous product (8) in the answer.

1 2
� 3 4

8 8
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Plausible combinations
I classified four behaviours as combinations of bugs of which at least one was unob-
served, but plausible. There were 2 occurrences of a combination of does-not-record-100s
(only observed for multiplication), and does-not-add-carry. Both cases were on addition
problems:

1 0 1
+ 9 9

91 0

The next behaviour combines does-not-record-100s with a bug in which the carry is
ignored in the tens column which is similar to the observed bug does-not-carry-ones.
Again, this is an addition bug (2 occurrences):

1 0 1
+ 9 9

01 0

The first multiplication combination occurred once, and involves the bugs does-not-
add-partial-product and last-multiplication-skipped:

1 2
� 6 1

1 2
1 2 0

Note that the classification here is of a combination of bugs, but the behaviour derives
from one mistake. In the previous example, the processing stopped after the 12 from
2�6=12 was written. No attempt was made to add the partial product. It is not clear how
further training on adding partial products would change this behaviour. For children,
remediation on an individual bug in a bug combination will presumably remove the bugs
independently. I have found no evidence in the literature for this one way or the other.
Nevertheless, future work should explore the possibility that apparent bug combinations
in the network can be removed individually.

The final combination again involves does-not-add-partial-product, and also repeats
part of the multiplication (1 occurrence):

1 2
� 6 1

1 2
1 2 0
1 2 0

Observed bugs
The results so far indicate that the model, as measured by the number of star bugs, has
little predictive power. The situation is much worse when the predicted observed bugs are
considered (those bugs that the network exhibited and are also listed in the appendices).
The model only predicted 6 different bugs. These are shown in table 5.5.

It should be noted that the model is incapable of capturing a number of bugs because of
certain design decisions. For example, the bug N�0=N cannot be accounted for because
the presence of particular digits was not part of the input vector. The network was trained
on a very limited set of skills, which mostly involved scanning down columns. This lack
of experience means that it is very unlikely that the network could produce bugs like
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Bug name Rank +1 +2 +3
ignores-10s-column 10 22.22 23.53 19.23
does-not-carry-ones 1 0.00 5.88 11.54
does-not-record-100s 16 22.22 11.76 7.69
does-not-raise-carry 9 11.11 5.88 3.85
quits-after-first-multiplication n/a 22.22 29.41 30.77
quits-after-first-multiplier 7 22.22 23.53 26.92

Table 5.5. Observed bugs that are predicted by the model as a percentage of
all predicted observed bugs. The rank number is from table A.2 on page 144.

adds-disregarding-columns. However, there are only a small number of exceptions, and
the 6 predicted bugs is a woeful 5.88 per cent of the 102 bugs recorded in the appendices.

The distribution of observed and unobserved bugs should be interpreted with caution.
The comparison to errors made by children is difficult to assess because there is no way
to know how frequently each kind of problem occurred. The number of times a bug
occurs depends on how many chances it has of occurring. The set of problems used in
this model was not designed to match the problems frequency experienced by children.
Hence, the results presented above cannot be directly compared to results reported for
children.

5.4 Analysis

Empirical adequacy is not the only measure of a model. Rather than disregard the model
because of the poor fit to the data, or attempt to “tweak” the model to improve the
results, it is better to look into the system to understand its behaviour. After analysing
the network (see next section) it is clear that the choice of operators is not quite right,
and these could be developed. The important point to note here is that arithmetic is a
procedural skill. Whichever way one conceptualizes multicolumn arithmetic, the result
is a procedural skill, with all the entailments of subprocedures and conditional branching.
It turns out that the mistakes the network makes are very “procedural” in nature. The
poor fit to the observed data, I claim, is not a feature of connectionism, but a result of
selecting an inappropriate representation of the problem.

5.4.1 Finite state machines
Arithmetic can be viewed as learning to be a finite state machine, and recurrent networks
can learn to be finite state machines, so it seems apt to analyse the network as a FSM. There
are a number of ways of extracting a FSM from a network (Giles, Miller, Chen, Chen, Sun
& Lee 1992; Maskara & Noetzel 1992). The process starts by recording the hidden unit
activations as a network solves a number of problems. The hidden unit vectors are then
assigned to certain states in the FSM. Different methods use different ways of assigning
hidden vectors to states. The Maskara & Noetzel approach is to assume that a particular
hidden vector represents the same state as another if the corresponding elements from
each vector differ by less than some specified tolerance. Giles et al. quantize every element
of every hidden vector. The simplest case is to assume a binary quantization, in which
each bit of the hidden vector is 1.0 if the activation is greater than 0.5, and zero otherwise.
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Figure 5.8. Finite state machine extracted from a network using the Maskara
& Noetzel method (tolerance=0.04). The circles represent states, and the
state numbers next to them are for reference purposes. Each state has a
label associated with it (e.g., DWN for state 13). These are abbreviations of the
output operations listed in table 5.1

With three quantization states a hidden unit will be set to zero if its activation is less than
0.33, 1 if between 0.33 and 0.66, and 2 otherwise. The hidden vectors can be compared
once they have all been quantized. Obviously the quantization size is the parameter
equivalent to Maskara & Noetzel’s tolerance value.

Figure 5.8 shows the FSM extracted from the first network, which had only been
trained on 1+1. Hidden activations were recorded for the problems 1+1+1, 1+1+1+1, and
1+1+1+1+1. The states were grouped using Maskara & Noetzel’s method with a tolerance
of 0.04. The solution paths are identical up to state 9 (bottom centre of figure). For 1+1+1,
the next thing the network has to do is move down once more, passing the rule mark,
write the units digit, 3, and declare itself done. For 1+1+1+1, the network must add the
extra digit, before moving down and returning to the “write units and done” sequence.
This particular network gives the answer of 4 for 1+1+1+1+1, and the reason for this can
be seen in the figure. The behaviour changes at state 4 (centre left of figure), where instead
of re-entering the add-down loop, the network executes three downs, skipping over the
extra digit. It then writes the units and finishes.

The main difficulty in using FSM extraction as an analysis tool is the setting of the
similarity parameter—either the tolerance value or number of quantization levels. Setting
the tolerance too low means that similar states are classified as different. A high tolerance
can gives the impression that the network has generalized more than it actually has by
classifying dissimilar states as a single state.
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5.4.2 Graded state machines
Setting the similarity measure is a trial-and-error processes, and can give a false impres-
sion of the systems abilities. Also, the very nature of FSM extraction means that hidden
vectors either represent a particular state or they do not; there is no room for graded
states (Servan-Schreiber et al. 1991). In reality, connectionist network are not finite state
machines although they can act as if they were. Servan-Schreiber et al. (1991, p. 179) note:

The network implementation [of a FSM] remains capable of performing simil-
arity-based processing, making it somewhat noise-tolerant (the machine does
not ‘jam’ if it encounters an undefined state transition and it can recover as the
sequence of inputs continues), and it remains able to generalize to sequences
that were not part of the training set.

Servan-Schreiber et al. consider these kinds of recurrent networks as “…an exemplar
of a new class of automata that we call graded state machines” (p. 179). Rather than use
cluster analysis (as Servan-Schreiber et al. do) or FSM extraction to analyse the behaviour
of these systems, I find it more profitable to look at processing trajectories. This method
begins with the recording of hidden unit activations, just as it does with FSM extraction.
However, rather than computing states, the hidden vectors are plotted, preferably as
points in 35 dimensional activation space. Each point is joined to the next in the sequence,
striking out a solution trajectory.

To visualize these trajectories the dimensionality is reduced by performing princi-
pal components analysis (PCA). This is a method of computing the direction of greatest
variation in the hidden unit activations. The original hidden unit vectors are projected
back onto a selected number of the components of variation, usually two of the first
three, giving a plot which (hopefully) has extracted the important aspects of the hidden
unit representations. PCA has been widely used to analyse hidden layer representations
(Dennis & Phillips 1991), but Elman (1989b, 1989a) was one of the first to use it to draw
PCA trajectory graphs for sequential networks. Jordan (1986) also discussed attractor dy-
namics in sequential networks, but without looking into the hidden unit representations.
Describing network behaviour in terms of PCA trajectories also invokes the language of
dynamic systems (Cummins 1993).

Figure 5.9 shows the PCA trajectory for the network used in the FSM extraction of
figure 5.8. Again, the hidden unit activations were recorded for 1+1+1, 1+1+1+1, and
1+1+1+1+1. The labels on the figure refer to the output action associated with a given
point, and the number is the time step at which each of the actions occurred. For example,
ADD-3 refers to the action “add to accumulator” which occured on the third step in the
sequence.

On the third problem the network fails to add the final 1. The first step is exactly
the same for all three trajectories (zeroing the accumulator, ZAC-1). As with the FSM
analysis, the PCA analysis shows that the problems follow the same trajectory up to step
7, where the trajectories are zigzagging between DWN and ADD. After the additions have
been performed, all the trajectories merge to perform the necessary two DWN actions and
the final DON.

Although no explicit clustering of states has been performed, it is clear that regions of
the PCA graph show something equivalent to states—e.g., the cluster of DON or DWN at the
bottom of the figure. Zooming into the zigzag region gives a clearer picture of what is
happening when the network incorrectly answers 1+1+1+1 (figure 5.10). The trajectories
are identical upto ADD-7. The trajectory for 1+1+1 (solid line) moves to DWN-8 and then

108



1+1+1

1+1+1+1

1+1+1+1+1

PC 2

PC 0

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

-0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.50 0.00 0.50 1.00 1.50

ZAC-1

SAD-2

ADD-3

DWN-4

ADD-5

DWN-6

ADD-7

DWN-8

DWN-9

UNI-10
DON-11

ZAC-1

SAD-2

ADD-3

DWN-4

ADD-5

DWN-6

ADD-7

DWN-8

ADD-9
DWN-10

DWN-11

UNI-12

DON-13

ZAC-1

SAD-2

ADD-3

DWN-4

ADD-5

DWN-6

ADD-7

DWN-8

ADD-9
DWN-10

DWN-11
DWN-12

UNI-13

DON-14

Figure 5.9. Trajectory of a network solving three addition problems. The
trajectory directions are implied by the time step numbering.

heads off finish of the problem. For 1+1+1+1 and extra add-down sequence is required
(ADD-9 and DWN-10). The next step for 1+1+1+1+1 should be another addition, ADD-11,
but as was shown earlier, the network skips over the digit with DWN-11.

Using PCA trajectories the explanation why the network makes this mistake is much
clearer than that supplied by the FSM graph. Either the “add” attractor is not yet stong
enough, or the transition out of the “down” attractor is not accurate enough. This kind
of analysis and explanation is very useful in understanding why the networks make the
mistakes they do, and what kinds of mistakes they could make. Other examples are given
in this section.

5.4.3 Repairs
When the system encounters an unseen problem it does not halt. The actions it performs
depend on the structure of the trajectory space, which is determined by the training
sequence. As no explicit impasses occur within this system, there can be no repairs.
However, the closest equivalent to a repair is the state transition that occurs at the point
where the network encounters a new situation. This kinds of “repair” often takes the
form of a divergence from the desired trajectory.

An example of the “repair as trajectory divergence” is given in figure 5.11. The graph
contains the trajectories for three problems: 11+11, which the network solves correctly;
11�1, also solved correctly; and 11�11, which the network cannot solve. The graph
was produced from a network which has been trained on two column by one column
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Figure 5.10. Zoom on the central region of figure 5.9.

multiplications, but this is the first time it has encountered a two column by two column
multiplication. However, the system has been trained on two column by two column
addition.

All the trajectories follow a more-or-less anticlockwise spiral from the centre of the
graph. It is worth tracing out the paths of the two multiplications (dashed lines) from
SMU-1 to see that, although they follow a similar path, they have diverged by JTR-9

(bottom centre of graph). The divergence, which began after the first step, is due to the
fact that the system is receiving different input patterns because the first column of the
second row of 11�11 is not the leftmost column as it is for 11�1.

After the JTR-9 step, both multiplication paths move on to correctly perform a multi-
plication, MULT-10. However, the next step for 11�1 is JAS-11 (top of graph). For 11�11
the system should also jump to the answer space to write the product, but it has never
been in a situation where there are two multiplicands and two multipliers. The system
actually performs DWN-11 and ADD-12 which are very close together on the graph, just
below JAS-11. The system then does the JAS operations and finished the problem as if it
were 11�1.

This bug shows itself on 43�11. 43�11 produces the same sequence of actions as
11�11, but because different numbers are used it makes it clearer to see what is happening.

4 3
� 1 1

5 3

After 1�3 is correctly answered, 1�4 is performed, then the “down” and “add” actions
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Figure 5.11. PC space trajectory for a network trained upto and including
1�11. This is problem 17 from table 5.3.

are executed giving an answer of 5. It seems that the system was attracted into part of the
addition sequence, but then pulled back onto the multiplication path. It is not surprising
that in a novel situation the system should resort to solving the problem using steps from
a similar, trained solution (by following some of the steps from the trained two column
by two column addition on an unseen two column by two column multiplication). What
is unexpected is the fact that the system can “recover” and return to the multiplication
path. This is possible because the network is not a memoryless FSM, but a graded state
machine (GSM). The current state of the system can include information about the path
taken. Servan-Schreiber et al. (1991) found this by cluster analysis: the major branches
in the cluster were indeed the states of the FSM; however, further subdivisions were
noted which individuated each path. In figure 5.11 this can be seen as the close, but not
identical, positioning of states such as JAS-11 and JAS-13 at the top of the figure. Or
again in figure 5.9, where there is a cluster of DON and DWN actions at the bottom of the
figure, not a single point. In other words, GSMs differ from FSMs in that the next state is
not just a function of the previous state and the current input, but can also be based on
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the path taken to reach the current state.
In a production system the above behaviour of mixing some addition in with the

multiplication could be captured with a rule such as:

bugCC: [no_more_top] ) [startadd]

(See table 4.1 on page 69.) However it is not clear how or why such rules would be acquired
given that no_more_top is specific to multiplication. With the trajectory analysis there is
no such problems because all trajectories are represented within the same space. Observed
bugs will just be confused trajectories. There is also an account of the development of
bugs which does not have the snapshot nature of symbolic accounts (see section 5.4.5).

5.4.4 Accuracy of transitions
When training sequential networks, one usually thinks of having to learn the input/output
mappings one step at a time—learning step n before learning n + 1, and then learning
the other steps in sequence. In some case, however, the current training set may use
“subroutines” that already exist in the trajectory space. This means that learning is a
matter of adjusting existing transitions or creating new ones. The analogy to production
systems might be the construction of new clauses in the conditions of rules.

For example, after training a network to solve 11�11, testing on 12�15 produces the
bug quits-after-first-multiplier:

1 2
� 1 5

61 0

The problem here is that at step 16 of the sequence the network signals that it has
finished by activating the DON unit instead of starting the next answer row (NAR). This
network has already been trained on a lot of problems, including 11�11. Hence, the
subroutine for processing the second multiplier aready exists in the network, and it is just
a matter of training the system to get the correct transition at step 16 of the problem.

This can be shown in the following way. Solving 12�15 requires 58 output actions.
However it can be correctly solved by training on just the first 16 steps up to the point
where the network is making the incorrect transition. This training adjusts the transitions
between states to push the trajecetory on to the path for processing the second multiplier.
After training, the network correctly performs steps 17–58 even though it was not trained
on them explicity. The last 42 steps of the sequence come for free as a result of previous
training on other problems.

Getting step 16 correct is not enough to solve the problem. At some time during the
training of the 16 steps, the network produces the correct output at step 16 (i.e., NAR). This
does not mean that the whole sequence of 58 steps is correct. Rather, the network will
produce a few more steps of the sequence, but training on the 16 steps must continue
for some time before the sequence is fully learned. Although the output is correct, the
transition needs to be fine-tuned to ensure enough information is preserved to allow the
system to follow the correct trajectory.

Another situation in which accuracy is important is demonstrated by the bug shown
on page 102, where 118+590 is solved correctly alone, but not when part of a multipli-
cation. Here the problem is that one transition is not accurate enough in the context of
the many preceeding steps. A single step, marking the carry, is skipped over as a result.
Sleeman (1982) found a number of examples of these context-dependent errors in algebra
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Figure 5.12. Trajectories for the problems 11+11 (correct) and 100+100 (incorrect).

protocols: “…when the problem is ‘hard’, the student makes errors with rules with which
he previously succeeded” (p. 198). It seems that these errors are difficult to model (for
Sleeman’s system).

5.4.5 Development of trajectories
One of the more appealing aspects of connectionism is that the weights of the system
change slowly, allowing the model to escape the snapshot nature of symbolic models in
this domain. Learning, according to the analysis shown in this chapter, is about getting the
right transitions between states. States are not single points in a space, but are clustered
in an area. So in addition to learning and tuning transitions, the system needs to expand
or contract attractors for certain states to ensure that trajectories fall in just the right places
as defined by the training set.

Figure 5.12 and figure 5.13 show a network before and after training on the problem
100+100 (three column addition without carrying). Both systems correctly solve 11+11,
but only the second solves 100+100. In the case of figure 5.12, the behaviour of the system
is to simply ignore the third column:
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Figure 5.13. Trajectories for 11+11 and 100+100 after training on 100+100.

1 0 0
+ 1 0 0

0 0

Figure 5.12 shows that both problems strike out the same trajectory up to TNC-10

(centre bottom of the figure). At this point the first column has been solved. Both
problems then follow similar paths to process the second column. For the incorrect
trajectory, after writing the answer to the second column, the system correctly resets the
accumulator (ZAC-18), but then finishes (DON-19). The desired behaviour is for the system
to follow the “process a column” loop one more time. This can be achieved if the ZAC-18
step was moved closer to ZAC-9. After learning this is exactly what is seen (figure 5.13).

5.4.6 Summary
An analysis has been presented of the system’s behaviour in terms of solution trajectories
in principal components space. This kind of analysis is not without its problems. Most
notably is the problem of projecting a 35 dimensional hidden unit activation space to
the two or three dimensions that can be visualized. As the network requires 35 hidden
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units to solve the problem there is no reason to believe that two dimensions are going
to be adequate to understand the system. However, the usefulness of the method is an
empirical matter, and it seems that there is an interesting story that can be told about the
system by looking at trajectories in PC space.

The view presented in this chapter is that:

� Learning is the gradual adjustment of state attractors and state transitions. Once
enough states have been distinguished between, learning is a matter of getting the
correct state transitions.

� Bugs are incorrect transitions due to overlapping states.

� Repairs, in the sense of doing something sensible in novel situations, are blended
trajectories that result from generalization and similarity based processing.

� Impasses do not occur.

Although the results of simulations do not fit the empirical data very well, it can be
said that the network can capture certain kinds of behaviours that are appropriate for
modelling arithmetic. The analysis has shown that the trajectory space of the system
can contain regions that correspond to subskills—e.g., for processing a column. These
subroutines can be entered into and returned from because the network is not a FSM, but
a graded state machine, allowing states of a trajectory to have a memory of their path.
Such subroutines may be useful during learning, whereby the network does not have
to relearn a certain behaviour but can modify transitions into and out of a sequence of
actions.

It seems that an inappropriate set of operations were devised for this model. However,
whichever way arithmetic is sliced, the result is a procedural skill. That is, a skill made up of
subskills which are executed at the right moment. Production systems model “the right
moment” in the condition parts of the rules, and execute subroutines on the action part
of the rules. For the network, subskills are the well-worn trajectories, entered into by
(sometimes inappropriate) state transitions. Given the previous work on production
system models, this seems sufficient to capture the kinds of errors seen in arithmetic.

The explanation of errors is similar in spirit to the Norman’s “capture errors”…

…in which a frequently done activity suddenly takes charge instead of (cap-
tures) the one intended. You are playing a piece of music (without too much
attention) and it is similar to another (which you know better); suddenly you
are playing the more familiar piece…Or you get into your car on Sunday to
go to the store and find yourself at the office.

The capture error appears whenever two different action sequences have their
initial stages in common, with one sequence being unfamiliar and the other
being well practiced.

(Norman 1988, p. 107)

Norman classed these errors as slips, whereas the errors described here are procedural.

5.5 Bug migration

The system as presented so far always produces the same bug when run on the same
problem. Yet as discussed in chapter 4 children switch between bug sets over long and
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short periods of time. The phenomenon, called bug migration, can be captured by the
network in two ways: by adding noise during processing; or as a result of the slow
changes to the weights.

5.5.1 Bug migration as noise
Processing trajectories can be perturbed by adding noise to the activations of processing
units. There are many ways to do this. The results presented in this section are based
on adding noise to each connection, with the noise proportional to the magnitude of the
weight. Specifically, the net input to a non-input unit was changed to:

neti =
X

j

(ajwij + h(
wij

30
))

where h(n) returns a random number between �n. There was no particular reason for
using this method, and I suspect that other ways of adding noise would produce similar
results. The particular value of a thirtieth of the weight was selected by trial and error so
that the networks would produce a variety of behaviours, but still be able to produce the
behaviour they would if noise was not present.

Testing a network with this modified net input function produces a number of different
behaviours for the same problem. Hence, testing was as follows. The 27 networks used
in the experiments of section 5.3 were presented with the next unseen problem in the
curriculum. This same problem was presented 20 times in order to record the distribution
of behaviours.

Fifteen networks exhibited no variety in their behaviour, and just produced the be-
haviour that they would without noise. Five networks produced 2 or 3 behaviours. The
remaining 7 networks produced: 7, 8, 9, 12, 13, 15, and 17 behaviours.

The network that produced 7 behaviours was trained on 11�1 and tested on 111�1.
The behaviour without noise for this network was to process the first two columns
correctly, and then write the product of the third column (1) in the problem, producing:

1 1 1
� 1 1

1 1

This behaviour was also produced on 11 out of 20 of the runs with noise. The network
entered into a infinite loop on 2 runs, and produced the following 2 behaviours on another
2 occasions:

1 1 1
� 1

1 1 1

1 1 1
� 1

1 1

Notice that the first of these behaviours is the correct answer. Finally, 3 behaviours
occurred only once in the 20 runs:

1 1 1
� 1 1

1 1 1

1 1 1
� 1

2 1

1 1 1
� 1

2 1 1
2

The majority of these behaviours constitute star bugs, but this is not surprising given
that the system as a whole produces a large number of star bugs. Allowing noise into the
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Figure 5.14. Representation of the amount of time in epochs that five be-
haviours persisted. See text for explanation.

system, causing different behaviours to occur with varying frequencies, is one way bug
migration could be accounted for.

5.5.2 Bug migration as learning
The three repairs that VanLehn proposes are applied to impasses randomly. To account
for bug stability, he allows “patches” to be made to the local problem solver. This connects
particular impasses with particular repairs, allowing a behaviour to persist for some time.

The account of “bug migration as noise” does not suggest any consistency in observed
bugs. However there is a way for a connectionist model to account for bug migration,
and also allow the bug set to change over varying periods of time.

During learning, the behaviour of the network will change. Bug migration can be
accounted for by assuming that learning is a continuous process—not “a thing” that
happens at a particular moment.

For example, figure 5.14 shows the amount of time a particular behaviour is observed
during learning. In this case the network is learning the problem 11�1, and being tested
on 234�2. The behaviours, all star bugs, are:
A: 2 3 4

� 4 2
6 8

B: 2 3 4
� 4 6 2

6 8

C: 2 3 4
� 6 2

1 6 8

D: 2 3 4
� 4 2

4 8

E: 8 3 4
� 2

9 8

As training continued on 11�1, the network was tested on 234�2 every 1500 epochs.
In the figure, behaviour A persists for 7500 epochs, and B for 3000 epochs. Hence, some
behaviours may exist for a relatively long time, while others are short-lived. So although
the weights are always changing (continuous quantitative change), particular behaviours
can survive for varying periods of time (sporadic qualitative change).

5.6 Impasses

Impasses are:

1. Detectable by the processor solving the problem.
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2. Characterized by pauses or negative comments, such as “I don’t know what to do”.

3. Possibly the point at which learning takes place (VanLehn 1988, 1991a).

By this definition the connectionist model does not have impasses. However, the
networks show some interesting behaviours at the moments when new situations are
encountered.

In chapter 3, the experiments on memory for multiplication facts required the mea-
surement of a reaction time. The activation rule of the network was changed to allow
activation to build up slowly. The RT measure was the number of cycles needed for an
output unit to reach a threshold value.

It turns out that RT, when measured in this way, is correlated to the error on the output
layer. This should not be surprising because as the network learns the error is reduced,
and RT decreases as was shown in chapter 3. This means that a rough measure of RT
can be computed for the recurrent network introduced in this chapter, without having to
install the machinery needed to record RT, such as a “don’t know” unit.

Given the way the system works, there are some situations where there is no target
output. For example, when the system is running on a novel problem, the behaviour may
be buggy, resulting in a sequence of actions that may be longer than the target sequence.
Hence the usual error measure of target activation minus actual activation is not used,
and instead the “residual error” of the system is reported. Residual error assumes that
one output unit—the one with the largest activation—should be on and the others should
be off. Error is measured as the deviation from this one-of-N desired vector.

This error can be plotted as the network solves problems. For example, figure 5.15
plots the error for each step a network takes as it solves: 1+19, which is incorrectly solved;
11+1, also wrong; and 11+11, which is correct. The network in question has been trained
up to and including 11+11, but not on 1+19 or 11+1. In the case of 1+19, the network quits
when it focusses on the empty cell above the 1. For 11+1, the network processes the first
column correctly, and then writes the sum of the second column in the empty cell above
the rule line:

1
+ 1 9

0

1 1
+ 1 1

2

In the figure, the peaks in the error plots for 1+19 and 11+1 correspond to “classic”
impassess: the moment when the network has to deal with an empty cell. If the error
measure is correlated to RT, then these are also the moments when the network takes the
longest time to carry out an action, which might be called a repair. But of course these
“impasses” are not explicitly recognized or utilized by the network, and as such are not
“real impasses” at all.

Many of the bugs produced by the network occur towards the end of a sequence (as
they do in figure 5.15). For longer sequences, periods of buggy behaviour can give way
to relatively normal processing. Figure 5.16 shows such a sequence for a network trained
on 12�19 and tested on 12�50. Here the “impasse” is when a carry arises from the second
multiplier (5�2). The figure shows the residual error increase at this point, and remains
high for some time. Towards the end of the sequence, during the addition phase, the
error drops back down again.

It should be noted that these error peaks are generally the places where backprop-
agation does much of its work of reducing error. In this sense, learning is driven by
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Figure 5.15. Residual error for a network solving three addition problems.

pseudo-impasses, although clearly it is nothing like the impasse-driven learning pro-
posed by VanLehn.

The point to note here is that processing in the network is not homogeneous, and dif-
ferent stages of a solution can cause the network some difficulty as measured by residual
error. If the error was translated into reaction time, the network would have periods of
slow processing. The RT mechanisms for these events require further elaboration and
detailed simulations. It might be supposed that the RT mechanism is not dissimilar to that
presented for the memory of arithmetic facts. This also suggests that impasses may not
be all-or-none events, but a graded phenomenon. It also seems likely that the moments
of high error are most susceptible to perturbation by noise.

5.6.1 The importance of impasses
Systems like Soar (Laird et al. 1986) rely on impasses. However these impasses are
different from the ones discussed by VanLehn. Soar’s impasses are “little impasses” in
that they occur very frequently (VanLehn 1991a). The “big impasses” of Sierra occur at
a much larger scale (for a comparison of the two kinds of impasses see VanLehn 1990,
pp. 59–61). This difference is because Soar is a more detailed model of cognition, including
a model of memory. Other models, such as ACT* (J. R. Anderson 1983), do not have
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Figure 5.16. Residual error for problems 12�50 and 12�19.

impasses at all. Hence the importance of impasses is an empirical matter.
It is worth looking at the appeal of impasses. VanLehn (1988) is developing a impasse-

driven model of learning. The idea is that when an impasse is reached, some kind of
learning occurs (e.g., by asking the teacher what to do next; see VanLehn 1990, p. 145).
Impasse driven learning would also remove the need for some of the assumptions placed
on VanLehn’s learner.

Perhaps the most persuasive argument for the importance of impasses in learning
comes from VanLehn’s (1991a) study of “rule acquisition events”. A protocol of a subject
solving the Tower of Hanoi problem was analysed for the moments when new rules were
acquired. That is, VanLehn constructed a set of rules to fit the steps in the protocol. Of
the 11 rule acquisition events in the protocol, 8 occurred at an impasse. VanLehn reports
that the remaining 3 had nothing to do with impasses at all. Although impasse-driven
learning does not account for all the acquisition events in this case, it clearly could be a
powerful mechanism.

Yet it is quite possible that impasses are just a symptom, not the cause, of change. This
is the suggestion implied by the discussion of residual error: the role of such events is a
secondary phenomenon, one that is just the side-effect of the architecture. From another
point of view, it might be said that although there is a correlation between impasses and
learning events, the mechanisms have not been fully elaborated.

The safest conclusion at this point is that there may be many kinds of impasses.
VanLehn proposes that some are crucial to learning, whereas I suggest that some may
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be inconsequential. In any event the fact that impasse behaviour is observed requires an
explanation. Their importance is an empirical matter.

5.7 Summary

This chapter has shown that a connectionist system can “generate the kind of extended,
sequential problem-solving behaviour that characterizes students solving subtraction
problems”. This was the original aim. There was clearly little hope that the model would
match the empirical findings as well as Sierra does. Sierra, after all, grew out of more
than ten years of research on the impasse-repair process.

Production system models are sucessful in this domain because arithmetic is a proce-
dural skill. Despite initial assumptions about what connectionist networks can or cannot
represent well, it seems that there is a great deal of structure in the hidden layer acti-
vations. It also seems, from the analysis presented above, that the representations are
organized into subskills that can be utilized by the model. This property suggests that
the model is capable of interesting sequential behaviour, and it also changes the way
arithmetic problem solving is conceptualized.

It turns out, for example, that it is possible to model buggy behaviour without an
explicit impasse and repair process. The repairs carried out by the network, if they can be
called repairs, are just a product of the dynamics of the system. When a new situation is
met the solution path depends not on a handful of general purpose heuristics, but on the
statistical distribution of paths that have previously been followed.

Noise can be introduced to the system to vary behaviour. A more interesting possi-
bility comes from the idea that the processor (child or network) should not be considered
as a static entity. Although this conceptualization is encouraged by symbolic (snapshot)
models, it may be more profitable to think of the system as being constantly in flux.
Connectionist models promote this view.

Once the idea of a continuously changing, similarity-based system is taken seriously,
the purpose of an explict repair mechanism has to be questioned. This thought was the
basis of the model described in this chapter.

Having demonstrated that the networks show increases in error at moments that
might be classed as kinds of impasses, the obvious question to ask is: do impasses have
an important role to play, or are they just a side-effect of the processor? Tests should be
devised to determine which view of impasses is more appropriate.

This work can be continued in a number of ways. With the current architecture
the training environment can be explored. For example, errors resulting from “missing
knowledge” might be observed if a step in the training sequence was missed out—
perhaps because the child was ill and missed a lesson. Combining the multicolumn
network with the memory network would provide another source of errors, whereby
recall slips lead the multicolumn system into capture errors. The model predicts an
increase in capture errors when a new skill is introduced, such as learning multicolumn
multiplication after addition. Whether this is true of Sierra or children is something that
should be investigated.

Longer term goals might include looking at the contraints that can be placed on the
model from brain-damage studies (McCloskey, Aliminosa & Sokol 1991). The model
has placed much emphasis on the importance of understanding the perceptual basis of
arithmetic. More empirical work is needed in this area. On a related point there is much
work to be done on the set of primitive operations used by the network. Having shown
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that a network can represent procedural information in an interesting way, it remains to
be shown that the system could fit the data. An example of a possible change would be
to break down the mark_carry operation into smaller operations. Without this it is not
possible to model bugs like does-not-rename-sum. There are many possible representa-
tion schemes, and a huge number of potential operations; exploring the possibilities will
require further empirical constraints on the model.

The central issue is of impasses. Perhaps the significance of impasses will become
clear when impasse-driven learning models are constructed. However, this chapter has
attempted to show how it might be possible to account for arithmetic bugs without the
emphasis on impasses.
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CHAPTER 6

Summary

There were two main aims in writing this thesis:

1. To build an explicitly specified model of adult memory for multiplication facts.

2. To demonstrate an alternative view of children’s multicolumn arithmetic, and show
that such an approach is useful.

6.1 Memory for arithmetic facts

Chapter 2 contains a review of the literature and previous models of adult memory for
multiplication facts. It was noted that RTs tend to be lower for smaller problems than
larger problems, although there are exceptions to this rule. Most errors are operand
errors—answers that are correct for a problem that shares an operand with the presented
problem. With the exception of McCloskey & Lindermann’s MATHNET model, previous
models lack details about learning, response mechanisms or the spread of activation.

The cascade model presented in chapter 3 was trained on the multiplication facts and
captures the main aspects of the phenomena. Recall from the network is based on a build
up of activation in the hidden and output units. The RT is measured as the number
of processing cycles required before a product unit exceeds some randomly selected
threshold. When the threshold is low, incorrect products can be selected as the answer.
These errors are mostly operand errors.

Earlier experiments used different assumptions about representation of operands
and the frequency with which problems occurred. These experiments, together with
an analysis of the networks, suggest that the following factors contribute towards the
problem-size effect and error distribution: variations in input representation, especially
the relative “sharpness” of the encoding; how frequently each problem occurs in the
training set; and the nature of the arithmetic facts themselves. It also was noted that
coarse encoding is equivalent to training on false associations. Some models assume that
false associations are learned, and some do not. This thesis indicates that the question of
interest is not whether or not false associations are formed, but by which method they
are formed.

Preliminary simulations were presented of network damage and recall of zero and
ones problems. Finally, possible accounts of verification and priming were discussed.
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The various network models show some degree of consensus regarding the phenom-
ena associated with recall of arithmetic facts. For example, the problem is considered
as the spread of activation between operand units and answer units. However, there
are many interesting differences between the models, including: input and output rep-
resentation, intermediate representations, activation rules, training assumptions. The
importance of these differences remains to be explored. For example, one of the assump-
tions in the cascade model is that the presence of a tie problem is made explicit in the
input to the network. For adults tie problems are solved quickly, but for the network, this
is only achieved by the use of a tie flag. At the moment it appears that tie problems are
difficult for network models to account for without a measure equivalent to the tie flag.

6.2 Multicolumn arithmetic

Chapter 4 described children’s errors in multicolumn multiplication. Previous accounts
of buggy behaviour were considered—especially VanLehn’s Sierra model. Sierra is an
extension to repair theory and includes an inductive learning mechanism. VanLehn’s
model predicts that when children reach impasses, general purpose repairs are made to
the local problem solver. The errors that are observed depend on what kind of impasse
occurred and which repair was carried out.

A number of observations were made of why connectionism can contribute to this
domain. It was noted that the notion of a impasse does not directly apply to connectionist
networks: given an input, the network will produce an output. Networks may be able to
automatically repair undefined situations because of such properties as similarity-based
processing and automatic generalization.

Using some of the assumptions of VanLehn, and taking ideas from Suppes et al.’s
model of eye-movement, a connectionist model of multicolumn multiplication was built
(chapter 5). To study bugs, rather than slips, the network was trained to activate proce-
dures to carry out the details of multiplication, such as adding, multiplying, and keeping
track of registers. The recurrent network was trained on problems of ever-increasing dif-
ficulty, from 1+1 to 12�99. During training, the network was tested on unseen problems
from the curriculum, and errors occurred at this point.

The errors made by the system do not match the empirical observations very well,
although there are difficulties in comparing the errors to children’s errors. The set of out-
put operations, although sufficient for solving multiplication problems, requires further
work to capture children’s errors in detail. An analysis of the errors made by the net-
work shows some interesting results. The system is behaving as a graded state machine:
it has many of the properties of finite state machines, but does not “get stuck” when
encountering novel inputs. Errors were characterized as perturbations to the desired
trajectory, rather than perturbations to a rule set. The errors are a result of unlearned
state transitions, and the details of a particular error depends on its similarity to previous
experienced problems.

The state of the network was visualized by plotting the principal components of the
hidden unit activations. Although it is not obvious that this reduction in dimensions (from
35 hidden units to 2 axis) will provide any interesting information about the system, in
practice it does. The mistakes made by the system are capture errors: the system is tem-
porarily attracted into a region of state space which represents an arithmetic subroutine.
This is clearly visible with the PCA trajectory diagrams.

The representations learned by the system have a great deal of structure. The model
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suggests that this may be exploited to account for errors without reference to explicit
impasses or repairs. It was noted that the output layer of the network exhibits an increase
in residual error at moments that correspond to impasses. If the processing details of the
network were changed, this increase in residual error could be observed as an increase in
RT. This raises the question of whether impasses are important moments for the learner,
or simply a by-product of the processing mechanisms. The model requires more work
before this suggestion can be more thoroughly explored and tested.

This is, of course, just one of many possible connectionist views of impasses. From
the point of view of Soar, for example, Rosenbloom (1989) suggests that connectionist
impasses may occur when a number of output units are above threshold—meaning that
there is no uniquely specified course of action to take.

6.3 Future work

Specific future work, in the short- and mid-term, was outlined at the end of chapters 3
and 5. More general comments are made here.

Our understanding of the representation of number and of the training environment
is poor. In both models the training environment—frequency or order of problems—is
important. Empirical evidence needs to be accumulated to understand what problems
children actually encounter.

Experiments in part I showed that changes in the “sharpness” of operand representa-
tion changed the results of the simulation. In part II, emphasis was placed on arithmetic
perceptual skills, and in particular on eye-movements. Without an understanding of
these details it will be difficult to build an appropriate operation set for the multicolumn
model. It seems that more study is needed of preschool number abilities and foundational
skills, such as number comparison and counting. The representation of number assumed
and developed by the recall network should be applied to these other number skills. In
this way it may be possible to determine the validity of the various representations, and
evaluate the plausibility of a product level of representation and a tens and units level.
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APPENDIX A

Addition Bugs

In comparison to the research on subtraction, there have been few studies which attempt
to pin down multiplication and addition bugs. This lack of data is an obvious problem,
although as pointed out in chapter 5, it is not such a serious problem for this particular
project. Nevertheless, it is important to know, at least roughly, what kinds of bugs can
occur and how frequent they are likely to be.

These appendices list the multiplication and addition bugs found in a search of the
literature. All of the studies looked at have problems, and the lists presented here do not
remove the need for a large, modern study of multiplication and addition.

A.1 Sources

The first source of bugs comes from Attisha (1983, also Attisha & Yazdani 1984). Attisha
built a tutoring system for all four operations, and surveyed the literature for bugs.
Although a large number of bugs were listed, Attisha failed to indicate their frequency
or give examples with working marks. Without working marks it is difficult to interpret
the definitions of certain bugs, namely those which involve carrying. Those definitions
that could be interpreted are included here, and working marks have been added where
it aids understanding of the bug.

One of the sources used by Attisha was the bug catalogue produced by Cox (1974).
She studied the literature on arithmetic bugs from 1900 to 1973, and also conducted a
study of bugs found in 564 subjects in grades two to six. The study demanded that the
subjects be close to 100 per cent accurate on their number facts, and bugs were only
accepted if they occurred at least three out of five times on a given type of problem.

Cox tested children on the four multicolumn tasks by having them complete tests
which were based around a number of levels. For addition there were eight levels,
starting from addition of two digits to one digit without renaming. Each level became
increasingly difficult, up to addition of three two-digit numbers with renaming. For
multiplication there were ten levels. Cox listed the bugs found at each level, and then
over the levels produced a categorization of the bugs. As can be seen from table A.1, Cox
classified the bugs according to the kind of faulty knowledge that caused the error. The
meaning behind Cox’s labels is obvious, except for “concept”, which is the case when
the child seem to be lacking a basic understanding of the concept of multiplication or
addition.
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Addition Multiplication
Renaming 23 Concept 19
Concept 17 Partial product 13
Wrong operation 6 � after renaming 10
Place value 5 + after renaming 7

Renaming 6
� by zero 6
Wrong operation 4
Reversal of digits 2

Table A.1. Categories of bugs reported by Cox (1974), and the number of
different bugs that fell under each category heading.

Cox’s analysis and method of testing makes it impossible to know exactly how general
or specific a particular bug is. For example, for level 2 problems (adding a one digit
number to a two digit number, renaming needed) if the subject does not carry, is he or
she exhibiting the bug does-not-carry-ones or does-not-carry? That is, if the subject was
given a problem involving more digits, would they fail to carry just in the first (ones)
column, or in all columns? In these appendices the most specific bugs are listed. Perhaps
this complication is why Cox lists the global bug frequencies based on bug categories,
rather than on specific bugs.

In her literature survey Cox missed the large arithmetic study undertaken by Buswell
(1926). Using verbal protocols, Buswell described behaviours for all four operations. The
study lists the number of occurrences of various “habits”—consistent behaviours, but not
necessarily behaviours that could be classed as “buggy”. For example, one particular
habit, “added carried number last”, describes a subject who always added the carry digit
after adding up a column, rather than before starting on the column. Buswell notes that
occasionally the subject would forget to add the carry, and this could be avoided if the
subject added the carry first (ibid., p. 160). This kind of behaviour does not fit with
the modern notion of a bug. However, many of the habits described do appear to be
bugs, and are included here. Whereas Cox’s descriptions may be over specific, Buswell
suffers the opposite problem. For example, Buswell describes the general bug wrong-
operator, when other authors give more specific bugs like multiplies-instead-of-adding
or subtracts-instead-of-adding.

The final source of bugs comes from a small, unpublished undergraduate project
(Ainsworth 1991). It is included here because it builds upon the work of Young & O’Shea
(1981) and presents a production system model of multiplication, as well as bug frequency
information. As such it is the only study to date which can be easily compared to the
computational studies of subtraction.

A.2 Notes on the catalogue entries

These two appendices list 102 bugs. There are 63 multiplication bugs, of which 9 do not
have frequency information. For addition, the total is 39, 11 without frequency data.

Each entry in the catalogue is laid out as follows. The bug name, given in bold, is
followed by a short description of the bug. Most bugs have one or more examples to
clarify the description. The source of the bug is indicated by showing the name of one of
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the authors mentioned in the previous section. If that author gave frequency information,
it is shown as a percentage of all the bugs taken from that author. Note that this will not be
a percentage of all the bugs listed by that author: bugs were not included either because
they were not clearly described, or because they were not relevant (e.g., number fact
errors). For addition, 116 bug occurrences were used from Cox, and 484 from Buswell.
A total of 113 occurrences of multiplication bugs were used from Cox, 512 from Buswell,
and 76 from Ainsworth.

The catalogue is listed in alphabetical order, but table A.2 (on page 144) lists the most
frequent bugs in order of frequency—or an approximation to that given that many bugs
have frequency values from two or three authors.

Some of the bugs listed produce results that look identical to other bugs. For example,
the bugs does-not-rename-sum and does-not-rename-product both result in the subject
writing carry digits in the answer row. However, these bugs qualify as separate bugs
because they have been observed independently of each other. That is, a subject can fail
to rename a partial product, yet correctly rename when adding the partial product.

The Buswell frequencies are based on the total frequencies made by 263 subjects,
spread over grades 3 to 6 (1926, tables XXXV to XXXVII, pp. 136–139). From the Ainsworth
study, the frequencies are summed over two sets of 10–11 year olds and one group of 8-9
year olds (Ainsworth 1991, table 2, p. 32).

The model described in chapter 5 does not attempt to model certain kinds of errors,
and for this reason some space-saving liberties have been taken in these appendices. In
particular, pattern errors, like N�0=N, are only given one way round (i.e., 0�N=N is not
shown). In the Cox, Ainsworth and Buswell studies, they are given both ways as they
can occur independently.

Addition bugs

Added-imaginary-column. The subject went on to write an answer for a column that did
not exist.

6 9
+ 1 2
1 81 1

Buswell 0.21%

Adds-disregarding-columns. All the digits of the problem are added, without regard for
the columns, i.e., 4+7+6+1+7=25.

4 7 6
+ 1 7

2 5

Cox 12.93%
Buswell 11.36%
Attisha

Adds-left-to-right. Addition is done horizontally, left to right. E.g., 2+4=6, 5+3=8.

2 4
+ 5 3

8 6

Buswell 0.62%
Attisha

Adds-like-multiplication. Addition is performed using the pattern for multiplication
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(e.g., 3+6=9, 3+4=7).

4 6
+ 3

7 9

Cox 3.45%

Carries-one-to-100s. One is carried into the hundreds column regardless of whether a
carry is or is not needed.

5 0 5
+ 7 4

61 7 9

Cox 0.86%

Carries-one-to-10s. One is carried into the tens column when it is not necessary.

4 6
+ 3

51 9

Cox 1.72%

Carries-ten. Ten is carried rather than one. I.e., 7+5=12, 2+1+10=13.

2 5
+ 1 7
1 3 2

Attisha

Carries-two. The subject carries two in every column.

2 7 1
+ 4 1 2

82 02 3

Attisha

Carries-wrong-digit. When a column result needs to be carried, the wrong digit is carried.

5 1 9
+ 8 6

94 15 1

Buswell 17.98%
Attisha

Carry-added-to-column. The carry digit is added into the answer for the current column.
In this example, 1+3=4, 7+8=15, 1+5=6, 2+5=7.

2 7 1
+ 5 8 3

7 6 4

Cox 1.72%
Attisha

Carry-once-always-carry. Once the subject starts to carry a digit, it is always carried.

1 2 7
+ 4 5 6

61 81 3

Attisha

Carry-zero-units. When renaming, the carry digit is correctly noted, but the subject
writes zero in the answer cell.

7 5
+ 1 8

91 0

Attisha
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Column-skipped. One column is ignored and the column’s answer is left blank.

3 7 5
+ 2 1 2

5 7

Buswell 7.44%

Copies-first-addend. Where there is a single digit addend, that digit is copied as the
answer in the ones column. The answer in the tens column is selected from one of the
digits in the top row.

4 6
+ 3

4 3

Cox 0.86%

Copies-ones-and-increments. The ones addend in the second row is incremented and
given as the answer to the ones column.

4 7 6
+ 1 7

4 8 8

Cox 0.86%

Copy-addend. One of the addend rows is copied to the answer row, possibly incremented
or decremented.

3 7
+ 5 1

3 8

Cox 0.86%

Copy-lower-addend. The addend in the second row is copied to the answer. If there are
digits over empty cells, they are also copied to the answer row.

4 7 6
+ 1 7

4 1 7

Cox 0.86%

Does-not-carry. The subject does not carry.

3 4 5
+ 7 6

3 1 1

Buswell 26.03%
Cox 1.72%
Attisha

Does-not-carry-ones. If the result of the ones column is a two digit number, the tens are
not carried. The rest of the addition is correct

3 4 5
+ 7 6

41 1 1

Cox 35.34%

Does-not-carry-over-blank. The subject does not carry to a number which is over an
empty cell.

4 6 8
+ 9

4 6 7

Attisha
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Does-not-raise-carry. The final carry at the end of an answer row is not raised onto the
answer row.

7 8
+ 7 1

1 4 9

Buswell 7.02%

Does-not-record-100s. The hundreds column answer is not recorded on the answer row.

5 0 5
+ 7 4

0 7 9

4 7 6
+ 1 7

91 3

Cox 1.72%

Does-not-rename-copy-100s. The sum of the first column is not renamed,the tens column
is not processed, and the digit in the hundreds column is copied to the answer row.

2 0 5
+ 8 6

2 1 1

Cox 0.86%

Does-not-rename-quits-100s. The carry digit from the first addition is written in the
answer row but the hundreds column is not processed.

2 0 5
+ 8 6

8 1 1

Cox 1.72%

Does-not-rename-sum. During addition, digits to be carried are written on the answer
row.

4 8
+ 3
4 1 1

2 8
� 1 7
11 95 6

+ 2 8 0
3 1 7 6

Cox 18.97%
Buswell 3.1%
Attisha

Ignores-10s-column. The tens column is ignored.

4 8
+ 3

1 1

Cox 0.86%

Ignores-first-column. The first column of the problem is ignored.

3 2 5
+ 2 7 1

5 9

Attisha

Left-alignment. The subject writes the problem aligned against the left column.

5 4
+ 3

8 4

Attisha
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Multiplies-instead-of-adding. The subject multiplies, rather than adding.

3 4
+ 2

6 8

Attisha

N+N=N. The subject answers that the sum of two identical digits is just one of the digits.

3 2
+ 4 2

7 2

Attisha

One-one-too-many. The answer in the ones column is one more than it should be.

5 2
8 6

+ 1 4
1 5 3

Cox 1.29%

Quit-after-last-lower. When the last of the numbers in the lower row has been processed,
the subject quits.

2 7 3
+ 2 4

9 7

Attisha

Quits-when-carry. When a carry is needed, the subject quits.

2 7 3
+ 1 8 2

5

Attisha

Renames-to-wrong-column. When renaming, the subject renames the carry to the wrong
column. In the example, the carry from the units column was renamed to the hundreds
column.

4 7 6
+ 1 7

51 8 3

Cox 3.88%

Spurious-carry. As some stage in the sum a carry was added when it was not appropriate.

Buswell 5.99%

Stutter-add. When there is an empty cell in the problem, the last digit in the bottom row
is used as the addend.

4 2 1
+ 3 4

7 5 5

Buswell 3.72%
Attisha

Subtract-carry. The carry was subtacted, rather than added to the addend.

7
+ 8 9

71 6

Buswell 0.21%
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Subtracts-instead-of-adding. The subject uses the subtraction algorithm instead of ad-
dition algorithm.

1 5
+ 2

1 3

Cox 9.48%
Attisha

Wrong-operator. As some stage in the problem the wrong operator was used (e.g.,
multiplication for addition). Buswell was no more specific than this.

Buswell 16.32%
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Addition Multiplication
Rank Bug B C Bug A B C
1 does-not-carry-ones 35.34 N�0=N 21.05 23.44 12.39
2 does-not-carry 26.03 1.72 answer-on-one-row 27.63
3 adds-disregarding-columns 11.36 12.93 does-not-add-carry 17.38 4.42
4 does-not-rename-sum 3.1 18.97 carries-wrong-number 18.55
5 carries-wrong-digit 17.98 multiplies-using-addition-pattern 11.84 4.42
6 wrong-operator 16.32 forgets-annex 3.95 7.62 3.54
7 subtracts-instead-of-adding 9.48 quits-after-first-multiplier 2.63 10.16
8 column-skipped 7.44 adds-carry-and-multiplier 8.85
9 does-not-raise-carry 7.02 carry-added-to-multiplicand 0.78 7.96
10 spurious-carry 5.99 copies-after-first-column 7.96
11 renames-to-wrong-column 3.88 does-not-rename-product 6.58 0.88
12 stutter-add 3.72 carries-wrong-digit 3.95 1.76 0.88
13 adds-like-multiplication 3.45 partial-product-confusion 6.25
14 carries-one-to-10s 1.72 incorrect-number-of-annex-zeros 6.19
15 carry-added-to-column 1.72 adds-multiplicand-to-answer 5.47
16 does-not-record-100s 1.72 multiplies-carry 5.31
17 does-not-rename-quits-100s 1.72 copies-multiplicand 0.78 4.42
18 one-one-too-many 1.29 does-not-carry-to-10s 3.95 0.88
19 carries-one-to-100s 0.86 partial-product-incorrectly-summed 4.42
20 copies-first-addend 0.86 multiplies-all-by-first-multiplier 3.95
21 copies-ones-and-increments 0.86 ignores-zero-multiplier 3.54
22 copy-addend 0.86 digit-omitted 3.32
23 copy-lower-addend 0.86 adds-instead-of-multiplying 2.65
24 does-not-rename-copy-100s 0.86 no-annexing-in-third 2.65
25 ignores-10s-column 0.86 0�N=0-carry-N 2.63
26 adds-left-to-right 0.62 multiplies-partial-product 2.63
27 added-imaginary-column 0.21 does-not-add-partial-product 2.34
28 subtract-carry 0.21 partial-product-reversed 1.17 0.88

Table A.2. The 28 most frequent addition and multiplication bugs. Key: Values are percentages from three authors,
A=Ainsworth (1991), N=76; B=Buswell (1926), N=512 for multiplication, N=484 for addition; C=Cox (1974), N=113 for
multiplication, N=116 for addition.
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APPENDIX B

Multiplication Bugs

0�N=0-carry-N. When multiplying by zero, zero is written as the column’s answer, but
the multiplicand is carried.

2 0
� 3

93 0

Ainsworth 2.63%

Adds-carry-and-multiplicand. The carried digit is added to the multiplicand, and this
sum is given as the column answer. E.g., 6�8=48, 3+4=7. The final “5” was copied.

5 3 6
� 8

5 74 8

Attisha

Adds-carry-and-multiplier. The carried digit is added to the multiplier, and this sum is
given as the column answer. I.e., 4�5=20, 4+2=6, 4�8=32.

8 0 5
� 4
3 2 62 0

Cox 8.85%

Adds-carry-and-multiplier-when-zero. When the multiplicand is a zero, the subject adds
the carry digit and the multiplier to obtain an answer. In the example, 2�7=14, 1+2=3,
2�5=10.

5 0 7
� 2
1 0 31 4

Cox 0.88%

Adds-carry-to-multiplicands. A column’s answer is the sum of the carry digit and the
multiplicand. E.g., 6�8=48, 3+4=7, 5+4=9.

5 3 6
� 8

9 74 8

Attisha
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Adds-carry-to-product. When the result of a multiplication is a two digit number, those
numbers are added, e.g., 3�5=15=6.

5 2
� 1 3

6 6
+ 5 2 0

5 8 6

Ainsworth 1.32%

Adds-instead-of-multiplying. The addition algorithm is used instead of multiplication.

7 2 5
� 3

7 2 8

Cox 2.65%
Attisha

Adds-multiplicand-to-answer. A multiplicand is not multiplied, but instead is added to
the answer. I.e., 3�6=18, 7+1=8.

7 6
� 3

81 8

Buswell 5.47%

Adds-using-multiplication-pattern. The subject uses the pattern for multiplication, but
adds the digits.

3 2 0
� 4

7 6 4

Cox 1.77%
Attisha

Always-carries. The subject always adds in the carry digit.

2 4 2 9
2

5 9 51 8

Buswell 0.2%
Attisha

Always-carries-one. When a carry occurs, the subject adds one to a column answer, not
the real carry.

5 1 4
� 7
3 5 82 8

Attisha

Answer-on-one-row. All the partial products are written on one answer row.

2 3
� 4 8

91 31 82 4

Ainsworth 27.63%

Answers-left-to-right. The subject writes the answer left to right. In the example, 2�9=18,
subject writes 8 carries 1, and so on.

7 1 2
� 9
8 01 61 4

Attisha
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Carries-wrong-digit. When the result of a multiplication or addition is a number that
needs to be carried, the wrong digit is carried.

7 2 4
� 6
4 86 14 2

Ainsworth 3.95%
Buswell 1.76%
Cox 0.88%
Attisha

Carries-wrong-number. A composite bug, where some number was carried, but it was
the wrong one (e.g., the units number as in carries-wrong-digit, or always a one, as in
always-carries-one).

Buswell 18.55%

Carry-added-to-multiplicand. The carry digit is added to the multiplicand before mul-
tiplying. I.e., 6�7=42, (2+4)�6=36, (3+3)�6=36.

3 2 7
� 6
3 63 64 2

Cox 7.96%
Buswell 0.78%
Attisha

Carry-added-to-tens. When adding a carry digit to a product, the carry is added to the
tens part, e.g., 4�6=24, 4�2=8, 2+8=28.

2 6
� 1 4
2 82 4

+ 2 6 0
51 4 4

Ainsworth 1.32%

Carry-not-raised. The carry digit is not raised at the end of a answer row in the partial
product.

4 2
� 4 1

4 2
+ 16 8 0

71 2 2

Ainsworth 1.32%

Carry-once-always-carry. Once the subject starts to carry a digit, it is always carried.

1 1 2
� 7

81 81 4

Cox 0.88%

Copies-after-first-column. The first column of a problem is solved correctly, but the
remaining multiplicands are copied to the answer row.

3 1 3
� 3

3 1 9

Cox 7.96%
Attisha
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Copies-multiplicand. No multiplication is performed, but the multiplicand is copied to
the answer row.

2 0 0
� 4

2 0 0

Cox 4.42%
Buswell 0.78%
Attisha

Copies-multiplicand-at-100s. When processing the hundreds multiplier, the subject
inserts two zeros and copies the multiplicand.

5 1 9
� 4 0 2
1 0 3 8

5 1 9 0 0

Cox 0.88%

Copies-multiplicand-including-zero. The multiplicand is copied as the answer, but a
zero is first inserted into the answer.

2 4 7
� 2 0
2 4 7 0

Cox 0.88%

Copies-multiplicand-less-2. The answer is two less than the multiplicand.

1 6
� 4

1 4

Cox 0.88%

Cross-multiplies. The digits of the problem are cross multiplied, e.g., 1�4=4, 3�2=6.

4 2
� 3 1

6 4

Ainsworth 1.32%

Digit-omitted. A digit in the product is not written down. In the example, the subject
decided not to write down the 5 from 54 (8�8=64, 8�6=48 + 6 = 54).

6 8
� 9 8 7 8

46 4

Buswell 3.32%

Does-not-add-carry. The carry digit is not added to the column product. Cox notes this
error when the subject misses just one carry in a problem (not necessarily every carry).

1 4 9
� 4

41 63 6

Buswell 17.38%
Cox 4.42%
Attisha

Does-not-add-partial-product. The subject does not add the partial product, leaving the
sum as shown in the example.

5 3
� 3 2 1

5 3
1 0 6 0

1 5 9 0 0

Buswell 2.34%
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Does-not-carry-in-partial-product. The subject does not carry when adding the partial
product.

9 2 7
� 7 3
2 7 8 1

6 4 8 9 0
6 6 5 7 1

Attisha

Does-not-carry-to-10s. The carried digit is not added to the product in the tens column.

2 1 6
� 6
1 2 63 6

Ainsworth 3.95%
Cox 0.88%
Attisha

Does-not-rename-copies-10s. The product from the first multiplication is written in the
answer row without renaming, and the tens multiplicand is copied into the answer.

1 6
� 4
1 2 4

Cox 0.88%

Does-not-rename-first-then-copies. The first multiplication is performed, and the an-
swer is written in the answer without renaming, and remaining multiplicands are copied.

2 3 7
� 4
2 3 2 8

Attisha

Does-not-rename-product. Digits carried over from a multiplication are written on the
answer row.

1 7
� 5
5 3 5

Ainsworth 6.58%
Cox 0.88%

Forgets-annex. The zero is forgotten. In the example, a zero should have been inserted
into the second answer row.

4 5
� 2 9
4 04 5

+ 91 0
4 9 5

Buswell 7.62%
Ainsworth 3.95%
Cox 3.54%

Ignores-zero-multiplier. The first multiplier is ignored when it’s a zero, and no zero is
inserted in the answer row.

5 3
� 2 0
1 0 6

Cox 3.54%
Attisha
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Incorrect-number-of-annex-zeros. An incorrect number of zeros are inserted into one of
the answer rows.

4 5 6
� 2 5 1

4 5 6
2 2 8 0 0
9 1 2 0 0

Cox 6.19%

Last-digits-multiplied. The last multiplicand is multiplied by the last multiplier, rather
than multiply each multiplier by each multiplicand. In the example, 2�7=14, 2�0=0+1=1,
then 5�3=15.

5 0 7
� 3 2
1 5 11 4

Cox 1.77%

Last-multiplication-skipped. The second multiplicand is not multiplied by the second
multiplier.

3 2
� 4 1

3 2
+ 8 0
1 1 2

Ainsworth 1.32%

Multiplied-product-by-carry. The carry digit is multiplied by the product, rather than
being added to it. In this example, 3�9=27, 3�1=3, 3�2=6.

1 9
� 3

62 7

Cox 1.77%
Attisha

Multiplies-all-by-first-multiplier. The first multiplier is used to multiply all the other
digits. In this example, 1�2=2, 1�4=4, 1�3=3.

4 2
� 3 1
3 4 2

Ainsworth 3.95%

Multiplies-by-carry-over-blank. When the multiplicand is over an empty cell, the subject
multiplies by the carry digit.

7 6
� 4
1 42 4

Attisha

Multiplies-carry. When there is a carry digit in the current column, it is used for multi-
plication instead of the multiplicand. I.e., 8�4=32, 3�4=12, and so on.

3 0 8
� 4

41 23 2

Cox 5.31%
Attisha
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Multiplies-last-multiplicand-and-writes-10. The only multiplication performed is to
multiply the multiplier by the last multiplicand (3�6 in the example). The product is
written in the answer row, and ten is written after it.

3 0
� 6

1 0 1 8

Cox 0.88%

Multiplies-multiplicands. The first multiplication is correct, but the subject then multi-
plies the multiplicands. In this example, 1�4=4, 2�4=8.

2 4
� 3 1

8 4

Ainsworth 1.32%

Multiplies-partial-product. The partial product is multiplied, not added, with the bug
multiplies-using-addition-pattern.

3 2
� 2 1

3 2
6 4 0
71 2 0

Ainsworth 2.63%

Multiplies-using-addition-pattern. Uses the addition pattern, but multiplies.

5 2 4
� 7 3 1
3 5 6 4

Ainsworth 11.84%
Cox 4.42%
Attisha

Multiply-by-carry-when-zero. When the multiplicand is zero, the subject prefers to
multiply by the carry digit.

4 0 6
� 7 3
1 2 31 8

3 02 84 2 0

Cox 1.77%
Attisha

N�0=N. When N is multiplied by zero, N is the answer.

3 0 2
� 3

9 3 6

Buswell 23.44%
Ainsworth 21.05%
Cox 12.39%
Attisha

No-annexing-in-third. No zeros were inserted for the third answer row.

Cox 2.65%

Partial-product-confusion. A general, combination error in which the subject had dif-
ficulty when the problem had two or more multipliers. In the first example, 4�5=20,
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2�4=8+2=10, 2�1=2+1=3. In the second example, the second and third products are
written on the same answer row.

1 4 4
2 5

31 02 0

5 1 2
� 2 5

5 1 2
+ 1 0 2 4 1 5 3 6

Buswell 6.25%

Partial-product-incorrectly-summed. The addition of the partial product is incorrect.
Cox apparently used this category to cover a number of addition bugs.

5 3
� 7 4
2 1 2

+ 3 7 1 0
4 4 2 2

Cox 4.42%

Partial-product-reversed. The order of the digits is reversed in the partial product. In
the example, the “219” should be “912”.

4 5 6
� 2 5 1

4 5 6
2 2 8 0

2 1 9

Buswell 1.17%
Cox 0.88%

Quits-after-first-multiplication. Only the first multiplication is completed.

2 4 7
� 4

2 8

Attisha

Quits-after-first-multiplier. Only the first multiplier is used.

3 4 6
� 2 8
2 73 64 8

Buswell 10.16%
Ainsworth 2.63%
Attisha

Quits-at-100s. The subject quits multiplying after processing the tens column.

2 2 4
� 1 1 8
1 7 9 2
2 2 4 0

Cox 0.88%

Repeated-multiplication. A multiplication was repeated.

4
� 2
8 8

Buswell 0.59%

152



Skips-zero-multiplicand. When the multiplicand contains a zero, the multiplication is
skipped and the reminding digits of the multiplicand are multiplied by the multiplier
directly under the zero. In the example, 2�9=18, 8�5=40.

8 0 9
� 5 2
4 0 1 8

Attisha

Spurious-zero-in-100s. A zero is inserted in the hundreds column for no apparent reason.

9 0 5
� 4 6

5 4 0 3 0
3 6 0 2 0

Cox 0.88%

Subtracts-partial-product. The subject subtracts the partial product rather than adding.
In this example the subject also subtracts the smaller number from the larger.

5 3
� 7 4
2 1 2

3 7 1 0
3 5 0 2

Cox 0.88%
Attisha

Too-many-annex-zeros. Too many zeros are inserted into the answer row when multi-
plying by a multiple of ten.

5 5 3
� 2 0

1 1 0 6 0 0 0

Cox 0.88%
Attisha

Weird-order. The digits are multiplied in a strange order. In this example, the order is:
4�1=4, 2�1=2, 2�3=6, 2�4=8.

1 3
� 2 4

8 6 2 4

Ainsworth 1.32%

Works-left-to-right. The subject starts at the left, adding carries to the right. In the
example, 5�3=15, 2�3=6+1=7.

5 2
� 3

5 71

Buswell 0.2%

Zero-in-first-row. A zero is inserted at the start of the first row. Subsequent rows have
the correct number of zeros.

4 3 6
� 5 1
4 3 6 0

+ 2 11 83 0 0
2 61 1 6 0

Cox 0.88%
Attisha
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